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Abstract4

Natural selection has been documented in contemporary humans, but little is known about the mechanisms behind it.5

We test for natural selection through the association between 33 polygenic scores and fertility, across two generations,6

using data fromUK Biobank (N = 409,629 British subjects with European ancestry). Consistently over time, polygenic7

scores that predict higher earnings, education and health also predict lower fertility. Selection effects are concentrated8

among lower SES groups, younger parents, people with more lifetime sexual partners, and people not living with a9

partner. The direction of natural selection is reversed among older parents, or after controlling for age at first live10

birth. These patterns are in line with the economic theory of fertility, in which earnings-increasing human capital may11

either increase or decrease fertility via income and substitution effects in the labour market. Studying natural selection12

can help us understand the genetic architecture of health outcomes: we find evidence in modern day Great Britain for13

multiple natural selection pressures that vary between subgroups in the direction and strength of their effects, that are14

strongly related to the socio-economic system, and that may contribute to health inequalities across income groups.15

1 Introduction16

Living organisms evolve through natural selection, in which allele frequencies change in the population through dif-17

ferential reproduction rates. Studying the mechanisms behind natural selection can help us better understand how18

individual differences in complex traits and disease risk arise (Benton et al. 2021). Recent work confirms that natural19

selection is taking place in modern human populations, using genome-wide analysis (Barban et al. 2016; Beauchamp20

2016; Conley et al. 2016; Kong et al. 2017; Sanjak et al. 2018; Fieder and Huber 2022). In particular, genetic variants21

associated with higher educational attainment are being selected against, although effect sizes appear small.22

As yet we know little about the social mechanisms behind natural selection. The economic theory of fertility (Becker23

1960) offers a potential explanation. Higher potential earnings have two opposite effects on fertility: a fertility-increasing24
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income effect (higher income makes children more affordable), and a fertility-lowering substitution effect (time spent on25

childrearing has a higher cost in foregone earnings). Thus, an individual’s human capital – skills and personality traits26

which are valuable in labour markets – can increase or decrease their fertility. Genetic variants which are linked to27

human capital will then be selected for or against. Also, the economic theory predicts that the relative strength of28

income and substitution effects will vary systematically across different social groups.29

This study uses data from UK Biobank (Bycroft et al. 2018) to learn more about contemporary natural selection. We30

test for natural selection on 33 different polygenic scores by estimating their correlation with fertility. We extend the31

analysis over two generations, using data on respondents’ number of siblings as well as their number of children. This32

is interesting because consistent natural selection over multiple generations could lead to substantive effects in the long33

run. Next, we examine correlations with fertility in different subgroups. Across the board, selection effects are stronger34

in groups with lower income and less education, among younger parents, people not living with a partner, and people35

with more lifetime sexual partners. Outside these groups, effects are weaker and often statistically insignificant. In some36

subgroups, the direction of selection is even reversed.37

We then show that a simple model of human capital, education and fertility choices can give rise to these empirical38

results. At higher incomes, the income and substitution effects are balanced, while among lower-income people, or39

single parents who face a bigger time burden from childcare, the substitution effect dominates. The theory predicts40

that polygenic scores’ correlation with fertility is associated with their correlation with education and earnings, and41

we confirm this. We then run a mediation analysis, which shows that part of the correlation with fertility is indeed42

mediated by educational attainment. Thus, contemporary natural selection on polygenic scores can be explained by43

scores’ correlation with earnings-increasing human capital.44

Lastly, we discuss the effects of natural selection. While our estimated effects on measured polygenic scores are small,45

natural selection substantially increases the correlation between polygenic scores and income, increasing genetic differ-46

ences between different social groups, and thus making the “genetic lottery” (Harden 2021) more unfair.47

2 Results48

We created polygenic scores for 33 traits in 409,629 individuals of European descent, corrected for ancestry using 10049

genetic principal components (see Materials and Methods). Figure 1 plots mean polygenic scores in the sample by50

5-year birth intervals. Several scores show consistent increases or declines over this 30-year period, of the order of 5%51

of a standard deviation. These changes could reflect natural selection within the UK population, but also emigration,52

or ascertainment bias in the sample (Fry et al. 2017).53
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Figure 1: Mean polygenic scores (PGS) by birth year in UK Biobank. Symbols show means for 5-year intervals. Bars are 95% confidence
intervals. Triangles denote a significant linear increase or decrease over time (p < 0.05/33).
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To test for natural selection more directly, we regress respondents’ relative lifetime reproductive success (RLRS) on each54

polygenic score (PGS):55

RLRS𝑖 = 𝛼 + 𝛽PGS𝑖 + 𝜀𝑖 (1)

RLRS is defined as respondent 𝑖’s number of children, divided by the mean number of children of people born in the56

same year. The “selection effect”, 𝛽, reflects the strength of natural selection within the sample. In fact, since polygenic57

scores are normalized, 𝛽 is the expected polygenic score among children of the sample (Beauchamp 2016).1 Note that58

equation (1) does not control for many environmental and genetic factors that could affect fertility, and as a result, 𝛽 is59

not an estimate of the causal effect of a polygenic score on fertility. However, natural selection is a matter of correlation60

not causation: polygenic scores which correlate with high fertility are being selected for, whatever the underlying causal61

mechanism.62

Figure 2 plots selection effects in the whole sample.2 To correct for ascertainment bias, we use participant weights63

from Alten et al. (2022), which match the UK Biobank eligible population on sex, birth year, location, education,64

employment, health, household size and tenure, number of cars and age at death. Weighting makes a large difference:65

effect sizes go up by a mean of 48%.3 23 out of 33 weighted selection effects are significant at 𝑝 < 0.05/33.66

We now show the empirical puzzles which motivate our economic model. Each concerns differences in the strength67

of natural selection across different subgroups in the sample. We re-estimate (1) splitting the sample by demographic68

and social variables, including income and education, and family structure variables including age at first live birth,69

presence of a partner, and lifetime number of sexual partners.70

Figure 3 plots selection effects for each polygenic score, grouping respondents by age of completing full-time education,71

and by household income. Effects are larger and more significant for the lowest education category, and for the lowest72

income category. Themedian percentage difference between the lowest and highest education categories, among scores73

which are significant for the lowest category and have the same sign across categories, is 249%. Between the lowest and74

highest income categories, it is 595%. These results are robust to controlling for respondents’ age (Appendix section75

7.4). Turning to family structure, we split respondents by lifetime number of sexual partners, at the median value of76

3 (Figure 4a). Now, selection effects are larger and more significant among those with more than 3 lifetime partners,77

1The selection effect 𝛽 equals 𝐶𝑜𝑣(𝑅𝐿𝑅𝑆, 𝑃𝐺𝑆)/𝑉 𝑎𝑟(𝑃𝐺𝑆). Since PGS are normalized to variance 1 and mean 0, this reduces to
𝐶𝑜𝑣(𝑅𝐿𝑅𝑆, 𝑃𝐺𝑆) = 𝐸(𝑅𝐿𝑅𝑆 × 𝑃𝐺𝑆) − 𝐸(𝑅𝐿𝑅𝑆)𝐸(𝑃𝐺𝑆) = 𝐸(𝑅𝐿𝑅𝑆 × 𝑃𝐺𝑆). This is the polygenic score weighted by relative lifetime
reproductive success, which is the average polygenic score in the next generation (Robertson 1966).

2We also check for stabilizing and disruptive selection by estimating (1) with a quadratic term. Stabilizing selection selects for intermediate values,
while disruptive selection selects for extreme values. In particular, we find disruptive selection for educational attainment polygenic scores: at higher
values of these scores, the negative effect on fertility is smaller (Appendix Figure 10).

3We use these weights throughout. All our qualitative results are robust if we run unweighted regressions. Appendix Table 2 shows results from
alternative weighting schemes.
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Figure 2: Selection effects: weighted and unweighted regressions. Each point represents a single bivariate regression of RLRS on a polygenic
score. P value threshold is 0.05, Bonferroni-corrected for multiple comparisons. Confidence intervals are uncorrected.

with a median percentage difference of 191%. Next we split respondents by whether they were living with a spouse or78

partner at the time of interview (Figure 4b). Effects are larger among those not living with a spouse or partner. The79

median percentage difference is 281%.480

Lastly, we split female respondents by age at first live birth (AFLB).5 There is evidence for genetic effects on AFLB81

(Barban et al. 2016), and there is a close link between this variable and number of children born. Figure 5 shows82

effect sizes estimated separately for each tercile of AFLB. Effects are strikingly different across terciles. Educational83

attainment, ADHD and MDD are selected for amongst the youngest third of mothers, but selected against among84

the oldest two-thirds. Similarly, several polygenic scores for body measurements are selected against only among older85

mothers. The correlation between effect sizes for the youngest and oldest terciles is −0.83. To investigate this further,86

we estimate equation (1) among females, controlling for AFLB. In 18 out of 33 cases, effects change sign when controls87

are added. The correlation between effect sizes controlling for AFLB, and raw effect sizes, is −0.58. Thus, selection88

effects seem to come through two opposing channels: a correlation with AFLB, and an opposite-signed correlation with89

number of children after AFLB is controlled for.90

We emphasize that these categories are not exogenous to polygenic scores. For example – both in the data (Appendix91

Figure 17) and in our theoretical model – education and age at first live birth are choice variables, which are endoge-92

4The same pattern holds if we analyse men and women separately (Appendix Figure 11). We also directly compared selection effects between
men and women (Appendix Figure 9).

5AFLB is unavailable for men.
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(a) Age left full-time education
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(b) Household income

Figure 3: Selection effects by education and income.
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(a) Lifetime number of sexual partners
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(b) Presence of a partner

Figure 4: Selection effects by number of sexual partners and presence of a partner.
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Figure 5: Selection effects by age at first live birth terciles (women only).

nous to a person’s human capital and to relevant polygenic scores. Nevertheless, differences in selection effects across93

subgroups constrain the set of possible explanations. A good theory of contemporary natural selection needs to show94

how these differences come about. As we describe below, a model based on the economic theory of fertility can do just95

that.96

We also examine selection effects among respondents’ parents, using information on respondents’ number of siblings97

to calculate parents’ RLRS. Effect sizes of polygenic scores are highly correlated across the two generations (Appendix98

Figure 12). Median-splitting respondents by year of birth, we find little evidence of change in effect sizes among the99

parents’ generation. There is some evidence that selection effect sizes are increasing in the respondents’ generation,100

with 8 polygenic scores showing a significant increase. We also check whether selection effects vary by AFLB and socio-101

economic status in the parents’ generation, using the 1971 Townsend deprivation score of respondents’ birthplace as a102

proxy for income (Townsend 1987). Results show the same pattern as for the respondents’ generation. Effect sizes are103

larger and more often significant in the most deprived areas (Appendix Figure 13). Effects are larger among younger104

fathers and mothers, and change sign when controlling for AFLB (Appendix Figures 15, 16). Lastly, we check for a105

“quantity-quality tradeoff ” between parents’ number of children and number of grandchildren. We don’t find any: in106

fact, the correlation between respondents’ and parents’ RLRS is positive (𝜌 = 0.1, 𝑝 < 2 × 10−16).107
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3 Human capital and natural selection108

These results show that selection effects are weaker, absent, or even reversed among some subgroups of the population.109

A possible explanation for this comes from the economic theory of fertility (Becker 1960; Willis 1973; Becker and Tomes110

1976). According to this theory, increases in a person’s wage affect their fertility via two opposing channels. There is111

an income effect by which children become more affordable, like any other good. There is also a substitution effect: since112

childrearing has a cost in time, the opportunity cost of childrearing increases if one’s market wage is higher. The income113

effect leads higher earners to have more children. The substitution effect leads them to have fewer.114

Suppose that certain genetic variants correlate with human capital: skills or other characteristics that affect an individual’s115

earnings in the labour market (Mincer 1958; Becker 1964). These variants may then be associated with opposing effects116

on fertility. The income effect will lead to natural selection in favour of earnings-increasing variants (or variants that117

are merely associated with higher earnings). The substitution effect will do the reverse.118

To show this, consider a simple model of fertility choices. ℎ is an individual’s level of human capital. For now, we119

simply identify this with his or her wage 𝑊 . Raising a child takes time 𝑏. People maximize utility 𝑈 from the number120

of children 𝑁 and from income 𝑌 ≡ (1 − 𝑏𝑁)𝑊 :121

𝑈 = 𝑢(𝑌 ) + 𝑎𝑁.

Here 𝑎 captures the strength of preference for children. 𝑢(⋅) captures the taste for income, and is increasing and concave.122

We treat 𝑁 as continuous, in line with the literature: this can be thought of as the expected number of children among123

people with a given 𝑎, 𝑏 and 𝑊 . The marginal benefit of an extra child is 𝑑𝑈
𝑑𝑁 = −𝑏𝑊𝑢′(𝑌 ) + 𝑎. The effect of an124

increase in human capital on this marginal benefit is125

𝑑2𝑈
𝑑𝑁𝑑𝑊 = − 𝑏𝑢′(𝑌 )⏟⏟⏟⏟⏟

Substitution effect

− 𝑏𝑌 𝑢″(𝑌 )⏟⏟⏟⏟⏟
Income effect

.

The substitution effect is negative and reflects that when wages increase, time devoted to childcare costs more in foregone126

income. The positive income effect depends on the curvature of the utility function, and reflects that when income is127

higher, the marginal loss of income from children is less painful.128

To examine education and fertility timing, we extend the model to two periods. For convenience we ignore time129

discounting, and assume that credit markets are imperfect so that agents cannot borrow. Write130

𝑈(𝑁1, 𝑁2) = 𝑢(𝑌1) + 𝑢(𝑌2) + 𝑎𝑁1 + 𝑎𝑁2 (2)
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Instead of identifying human capital with wages, we now allow individuals to spend time 𝑠 ∈ [0, 1] on education in131

period 1. Education is complementary to human capital ℎ > 0, and increases period 2 wages, which take the simple132

functional form 𝑤(𝑠, ℎ) = 𝑠ℎ. We normalize period 1 wages to 1, and let 𝑢(⋅) take the constant relative risk aversion133

form 𝑢(𝑦) = 𝑦1−𝜎−1
1−𝜎 . 𝜎 > 0 measures the curvature of the utility function, i.e. the decline in marginal utility of income134

as income increases. We examine total fertility 𝑁 ∗ = 𝑁 ∗
1 + 𝑁 ∗

2 and the fertility-human capital relationship, 𝑑𝑁∗
𝑑ℎ . For 𝜎 < 1135

and close enough to 1, Table 1 shows five theoretical predictions, along with our corresponding empirical results for136

the correlation between polygenic scores and RLRS.6 The key insight of the model is that for middling levels of 𝜎, the137

substitution effect dominates at low income levels, but as income increases, the income and substitution effect balance138

out.139

Table 1: Predictions from the theoretical model and corresponding empirical results.

Theory: the fertility-human capital relationship is… Empirical results

1. Negative: 𝑑𝑁∗
𝑑ℎ < 0. Figures 1 and 2.

2. Weaker (closer to zero) at higher wages and/or levels of

human capital.

Figure 3a. Selection effects are also weaker at

higher polygenic scores for educational

attainment (Appendix Figure 10).

3. More negative when the time burden of children 𝑏 is larger. Stronger effects for single parents (Figure 4).

4. Weaker at higher levels of education 𝑠. Figure 3b.

5. Weaker among those who start fertility in period 2 (𝑁 ∗
1 = 0)

than among those who start fertility in period 1 (𝑁 ∗
1 > 0).

Effects weaker among those starting fertility

later (Figure 5).

Thus, a simple economic model can explain many of our results. Other empirical work in economics also supports the140

link from human capital to fertility. Caucutt, Guner, and Knowles (2002) and Monstad, Propper, and Salvanes (2008)141

show that education and skills affect age at first birth and fertility. Income decreases fertility at low income levels, but142

increases it at higher income levels (Cohen, Dehejia, and Romanov 2013). US fertility decreases faster with education143

among single mothers than married mothers (Baudin, De La Croix, and Gobbi 2015), in line with our prediction 3 and144

as predicted by Becker (1981). A related literature shows negative correlations between IQ and fertility (e.g. Lynn and145

Van Court 2004; Reeve, Heeney, and Menie 2018).146

6Predictions 1-3 also hold in the one-period model with constant relative risk aversion. Our empirical results are actually stronger than prediction
5, in that correlations with fertility are reversed at higher AFLB. This prediction can be accommodated in the model if children have a money cost as
well as a time cost (Appendix Figure 24).
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Figure 6: Selection effects by correlations with earnings and educational attainment. Each point represents one polygenic score. Selected
scores are annotated.

4 Testing the theory147

We test the economic theory in two ways. First, it predicts that genetic variants will be selected for (or against) in148

proportion to their correlation with human capital. Figure 6 plots selection effects on each polygenic score against that149

score’s correlation with twomeasures of human capital: earnings in a respondent’s first job, and educational attainment.150

The relationships are strongly negative. Thus, human capital appears to be relevant to natural selection. The negative151

relationship suggests that substitution effects dominate income effects, which fits the known negative association between152

income and fertility (Becker 1960; Jones and Tertilt 2006). The correlations reverse when we control for age at first live153

birth, suggesting that within AFLB categories, the income effect dominates.154

Second, we run a mediation analysis to directly test whether the correlation between each polygenic score and fertility155

is mediated by educational attainment (Appendix Table 4). We use the 23 scores where the selection effect is significant156

at 𝑝 < 0.05/33. Figure 7 shows estimated proportions explained by educational attainment, along with bootstrap157

95% confidence intervals (uncorrected; 100 bootstraps). For 22 scores, the indirect effect of the score on fertility via158

educational attainment takes the same sign as the overall effect, and is significantly different from zero (𝑝 < 0.05/23).159

Among these scores, the median proportion of the total effect explained by the indirect effect is 25%. The educational160

attainment variable is a relatively crude measure of human capital: more accurate measures would likely explain more161

of the total effect.162
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Figure 7: Proportion of selection effect mediated by educational attainment, among polygenic scores with significant selection effects. Bootstrap
confidence intervals for the proportion are shown only where the interval is bounded (Franz 2007).

We consider three alternative theories that might explain our results. First, welfare benefits which incentivize child-163

bearing might be taken up more among low-income people. However, the majority of effect sizes appear unchanged164

over a large span of twentieth-century history (Appendix Table 3), during which government spending on child-related165

benefits varied considerably (Social Security Committee 1999). In general, there is only weak evidence that welfare166

benefits affect fertility (Gauthier 2007; see also Bergsvik, Fauske, and Hart 2021). Future work could test this theory167

more explicitly. A second alternative theory is that polygenic scores correlate with the motivation to have children,168

i.e. parameter 𝑎 in the model (cf. Jones, Schoonbroodt, and Tertilt 2008). This theory would not explain why selection169

effects are smaller at higher incomes and education levels. In fact, in the model, 𝑎’s effect on fertility gets stronger at170

higher levels of human capital. A third alternative is that traits under selection are linked to externalizing behaviour171

and risk-seeking. This might be partially captured by our parameter 𝜎, which can be interpreted as a measure of risk172

aversion over income; a more direct channel is risky sexual behaviour (Mills et al. 2021). The data here provide some173

support for this story: scores which might plausibly be linked to externalizing behaviour, like ADHD and younger age174

at smoking initiation, are selected for. However, risk-seeking seems unlikely to explain variation in fertility across the full175

range of scores under selection, including physical measures like waist-hip ratio and BMI. We test this theory directly by176

re-estimating equation (1) controlling for a measure of risk attitude (UK Biobank field 2040). The median ratio of effect177

sizes between regressions with and without controls is 0.98; all scores which are significant at 𝑝 < 0.05/33 in uncontrolled178

regressions remain so when controlling for risk attitude. This non-result could simply reflect the imprecision of the risk179
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attitude measure, which is a single yes/no question. But this measure does predict the overall number of children, highly180

significantly (𝑝 < 2 × 10−16 in 33 out of 33 regressions). Given that, and the statistical power we get from our sample181

size, we believe that the non-result is real: while risk attitude does predict fertility in the sample, it is not an important182

channel for natural selection.183

5 Discussion184

Previous work has documented natural selection in modern populations on variants underlying polygenic traits185

(Beauchamp 2016; Kong et al. 2017; Sanjak et al. 2018). We show that correlations between polygenic scores and186

fertility are highly concentrated among specific subgroups of the population, including people with lower income, lower187

education, younger first parenthood, and more lifetime sexual partners. Among mothers aged 22+, selection effects188

are reversed. Furthermore, the size of selection effects on a polygenic score correlates with that score’s association with189

labour market earnings. Strikingly, some of these results were predicted by Fisher (1930), pp. 253-254. The economic190

theory of fertility gives a parsimonious explanation for these findings. Because of the substitution effect of earnings on191

fertility, scores are selected for when they correlate with low human capital, and this effect is stronger at lower levels of192

income and education.193

Polygenic scores which correlate with lower earnings and less education are being selected for. In addition, many194

of the phenotypes under positive selection are linked to disease risk. Many people would probably prefer to have high195

educational attainment, a low risk of ADHDandmajor depressive disorder, and a low risk of coronary artery disease, but196

natural selection is pushing against genes associated with these traits. Potentially, this could increase the health burden197

on modern populations, but that depends on effect sizes. Our results show that naïve estimates can be affected by198

sample ascertainment bias. There may be remaining sources of ascertainment bias after our weighting; if so, we expect199

that, like the sources of ascertainment we have controlled for, they probably bias our results towards zero. Researchers200

should be aware of the risks of ascertainment when studying modern natural selection.201

We also do not know how estimated effect sizes of natural selection will change as more accurate polygenic scores202

are produced, or whether genetic variants underlying other phenotypes will show a similar pattern to those studied203

here. Also, effects of polygenic scores may be inflated in population-based samples, because of indirect genetic effects,204

gene-environment correlations, and/or assortative mating (Lee et al. 2018; Selzam et al. 2019; Kong et al. 2018;205

Howe et al. 2021), although we do not expect that this should change their association with number of offspring, or the206

resulting changes in allele frequencies. Although effects on ourmeasured polygenic scores are small even after weighting,207

individually small disadvantages can cumulate to create larger effects. Lastly, note that our data comes from people208

born before 1970. Recent evidence suggests that fertility patterns may be changing (Doepke et al. 2022). Overall, it is209
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probably too early to tell whether modern natural selection has a substantively important effect on population averages210

of phenotypes under selection.211

Because selection effects are concentrated in lower-income groups, they may also increase inequality with respect to212

polygenic scores. For example, Figure 8 plots mean polygenic scores for educational attainment (EA3) among children213

from households of different income groups. The blue bars show the actual means, i.e. parents’ mean polygenic score214

weighted by number of children. The grey bars show the hypothetical means if all households had equal numbers of215

children. Natural selection against genes associated with educational attainment is stronger at the bottom of the income216

distribution, and this increases the differences between groups. Overall, natural selection increases the correlation of217

polygenic scores with income for 28 out of 33 polygenic scores, with a median percentage increase of 16.43% in the218

respondents’ generation (Appendix Table 5). If inequalities in polygenic scores are important for understanding social219

structure and mobility (Belsky et al. 2018; Rimfeld et al. 2018; Harden 2021), then these increases are substantive.220

Similarly, since many polygenic scores are predictive of disease risk, they could potentially increase health inequalities.221

In general, the evolutionary history of anatomically modern humans is related to disease risk (Benton et al. 2021);222

understanding the role of contemporary natural selection may help researchers to map the genetic architecture of223

health disparities.224
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Figure 8: Mean polygenic score for educational attainment (EA3) of children by household income group. Blue is actual. Grey is hypothetical
in the absence of selection effects.

Existing evidence on human natural selection has led some to “biocosmic pessimism” (Sarraf, Feltham, et al. 2019).225

Others are more sanguine, and argue that natural selection’s effects are outweighed by environmental improvements,226
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like those underlying the Flynn effect (Flynn 1987). The evidence here may add some nuance to this debate. Patterns227

of natural selection have been relatively consistent across the past two generations, but they are not the outcome of a228

single, society-wide phenomenon. Instead they result from opposing forces, operating in different parts of society and229

pulling in different directions.230

Any model of fertility is implicitly a model of natural selection, but so far, the economic and human genetics literatures231

have developed in parallel. Integrating the two could deepen our understanding of natural selection inmodern societies.232

Economics possesses a range of theoretical models on the effects of skills, education and income (see Hotz, Klerman,233

and Willis 1997; Lundberg and Pollak 2007). One perennial problem is how to test these theories in a world where234

education, labour and marriage markets all interact. Genetic data, such as polygenic scores, could help to pin down235

the direction of causality, for example via Mendelian randomization (Davey Smith and Ebrahim 2003). Conversely,236

economic theories and empirical results can shine a light on the mechanisms behind natural selection, and thereby on237

the nature of individual differences in complex traits and disease risk.238

6 Materials and methods239

We use participant data from UK Biobank (Bycroft et al. 2018), which has received ethical approval from the National240

Health Service North West Centre for Research Ethics Committee (reference: 11/NW/0382). We limit the sample241

to white British participants of European descent, as defined by genetic estimated ancestry and self-identified ethnic242

group, giving a sample size of 409,629. For regressions on number of children we use participants over 50 (males)/45243

(females), since most fertility is completed by this age. This gives a sample size of 348,595.244

Polygenic scores were chosen so as to cover a reasonably broad range of traits, and based on the availability of a large and245

powerful GWAS which did not include UK Biobank. Scores were computed by summing the alleles across ~1.3 million246

genetic variants weighted by their effect sizes as estimated in 33 genome-wide association studies (GWASs) that excluded247

UK Biobank. To control for population stratification, we corrected the polygenic scores for 100 principal components248

(PCs). To compute polygenic scores and PCs, the same procedures were followed as described in Abdellaoui et al.249

(2019).250

Earnings in first job are estimated from mean earnings in the 2007 Annual Survey of Hours and Earnings, using the251

SOC 2000 job code (Biobank field 22617).252

Weighting data was kindly provided by Alten et al. (2022).253

Code for this paper is available at https://github.com/hughjonesd/why-natural-selection.254
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7.1 Selection effects by sex278

Figure 9 plots selection effects by sex. Differences are particularly large for educational attainment, height, ADHD and279

MDD. Several polygenic scores for mental illness and personality traits are more selected for (or less against) among280

women, includingmajor depressive disorder (MDD), schizophrenia and neuroticism, while extraversion is more selected281

for among men.282
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Figure 9: Selection effects by sex. Solid lines are significant differences at p < 0.05/33. Solid points are significantly different from 0 at
p < 0.05/66.
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7.2 Alternative weighting schemes283

We compare results for our main weights to 3 alternative weighting schemes: weighting by age/qualification; geo-284

graphical (weighting by Middle Super Output Area); and for women only, age, qualification and age at first live birth.285

Population data for weighting is taken from the 2011 UK Census and the 2006 General Household Survey (GHS).286

Weighting for Age/Qualification and Age/Qualification/AFLB weights was done using marginal totals from a linear287

model, using the calibrate() function in the R “survey” package (Lumley 2020). Geographical weighting was done288

with iterative post-stratification using the rake() function, on Census Middle Layer Super Output Areas, sex and289

presence/absence of a partner.290

Table 2 gives effect sizes as a proportion of the unweighted effect size, for all polygenic scores which are consistently291

signed and which are significantly different from zero in unweighted regressions.292

Table 2: Weighted effect sizes as a proportion of unweighted effect sizes.

Weighting

PGS Main Geographical Age/Qualification Age/Qual/AFLB

Eating disorder 2.19 1.62 1.69 0.76

Waist-hip ratio 1.89 1.54 1.19 0.96

Coronary Artery Disease 1.79 0.97 1.17 1.09

Height 1.76 1.85 1.31 0.98

Educ. attainment 2 (no UKBB) 1.63 1.51 1.25 1.14

Educ. attainment 3 (no UK) 1.62 1.57 1.24 1.17

Major Depressive Disorder 1.61 1.44 1.24 1.01

Age at smoking initiation 1.59 1.38 1.13 0.97

Waist circumference 1.58 1.52 1.09 1.19

ADHD 1.54 1.14 1.15 1.03

Age at menopause 1.54 1.63 1.17 0.85

Cigarettes per day 1.54 1.73 0.97 0.98

Smoking initiation 1.53 1.30 1.07 0.87

BMI 1.52 1.68 1.01 1.20

Caffeine 1.48 0.86 1.14 1.44

Hip circumference 1.44 1.51 0.98 1.44

Cannabis (ever vs. never) 1.38 1.41 1.02 0.83

Cognitive Ability 1.25 1.21 1.09 1.59

Body Fat 1.23 1.36 1.13 1.16

Extraversion 1.13 0.91 1.08 2.47

Autism 0.81 1.51 0.57 −0.70

Agreeableness 0.45 0.99 0.63 13.30

Mean 1.48 1.39 1.11 1.62

Median 1.54 1.47 1.13 1.06

Only consistently-signed and significant (when unweighted) estimates are shown.
Age/Qual/AFLB as a proportion of unweighted regressions including females only.
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7.3 Stabillizing and disruptive selection293

Stabilizing selection reduces variance in the trait under selection, while disruptive selection increases variance. To294

check for these, we rerun equation (1), adding a quadratic term in 𝑃𝐺𝑆𝑖. Scores for hip circumference show significant295

stabilizing selection (𝑝 < 0.05/33, negative coefficient on quadratic term). The EA2 score for educational attainment296

shows significant disruptive selection (𝑝 < 0.05/33, positive coefficient), which reduces the strength of selection against297

educational attainment at very high levels of the PGS. (The quadratic on the EA3 score has a similar coefficient but298

is not significant at 𝑝 < 0.05/33.) Figure 10 plots predicted number of children against polygenic score from these299

regressions.300

We also checked for stabilizing selection in the parents’ generation, using weights multiplied by the inverse of number of301

siblings. Scores for EA2 and EA3 show significant disruptive selection (𝑝 < 0.05/33, positive coefficient on quadratic).302

Other scores including hip circumference were not significant.303
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Figure 10: Stabilizing/disruptive selection: predicted number of children by polygenic score.
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7.4 Controlling for age304

Results in Figure 3 could be explained by age, if older respondents have lower income and are less educated, and also305

show more natural selection on polygenic scores. However, when we rerun the regressions, interacting the polygenic306

score with income category and also with a quadratic in age, the interaction with income remains significant at 𝑝 <307

0.05/33 for 17 out of 33 regressions. Similarly if we interact the PGS with age of leaving full time education and a308

quadratic in age, the interaction with age leaving full time education remains significant at 𝑝 < 0.05/33 for 12 out of309

33 regressions.310
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7.5 Number of partners and presence of partner by sex311

Figure 11 splits up Figure 4 by sex. The pattern of results is the same in both sexes: selection effects are stronger among312

those with more lifetime sexual partners, and among those not currently living with a partner.313
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Figure 11: Selection effects by number of sexual partners and presence of a partner, for men and women separately.
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7.6 Parents’ generation314

7.6.1 Selection effects and change over time315

The UK Biobank data contains information on respondents’ number of siblings (including them), i.e. their parents’316

number of children. Since respondents’ polygenic scores are equal in expectation to the mean scores of their parents,317

we can use this to look at selection effects in the parents’ generation. We estimate equation (1) using parents’ RLRS as318

the dependent variable.7 The parents’ generation has an additional source of ascertainment bias: sampling parents of319

respondents overweights parents who have many children. For instance, parents of three children will have, on average,320

three times more children represented in UKBiobank than parents of one child. Parents of no children will by definition321

not be represented. To compensate, we multiply our weights by the inverse of number of siblings.322

Figure 12 shows regressions of parents’ RLRS on polygenic scores. For a clean comparison with the respondents’323

generation, we rerun regressions on respondents’ RLRS excluding those with no children, and show results in the324

figure. Selection effects are highly correlated across the two generations, and most share the same sign. Absolute325

effect size estimates are larger for the parents’ generation. We treat this result cautiously, because effect sizes in both326

generations may depend on polygenic scores’ correlation with childlessness, and we cannot estimate this for the parents’327

generation.328

To learn more about this, we compare effect sizes excluding and including childless people in the current generation. The329

correlation between the two sets of effect sizes is 0.95. So, patterns across different scores are broadly similar whether330

the childless are counted or not. However, absolute effect sizes are smaller when the childless are excluded, for 27 out331

of 33 scores; the median percentage change is −41%.332

The fact that childless people have such a strong effect on estimates makes it hard to compare total effect sizes across333

generations. In particular, since the parents’ generation has a different distribution of numbers of children, childless334

people may have had more or less effect in that generation. Another issue is that we are estimating parents’ polygenic335

scores by the scores of their children. This introduces noise into our independent variable, which might lead to errors-336

in-variables and bias coefficients towards zero.337

As an alternative approach, we run regressions interacting polygenic scores with birth year, median split at 1950 (“early338

born” versus “late born”). We use both respondents’ RLRS and parents’ RLRS as a dependent variable. We use our339

standard weights, and further adjust for selection in the parents’ generation (see above).340

Table 3 summarizes the results. We report the number of scores showing significant changes over time (i.e. a significant341

7We don’t have data on parents’ year of birth for most respondents. To create parents’ RLRS, we divide respondents’ number of siblings by
the average number of siblings of all respondents born in the same year, weighting the average by respondents’ inverse of number of siblings to
compensate for ascertainment bias.
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Figure 12: Selection effects, respondents’ parents vs. respondents. Parental generation weights multiplied by 1/number of siblings. Respon-
dents’ regression excludes childless respondents.

interaction between polygenic score and the “late born” dummy): either a significant change in sign, a significant342

increase in effect size, or a significant decrease in size. There is little evidence for changes in selection effects within the343

parents’ generation, with just one score showing a significant decrease in size. In the respondents’ generation, effect sizes344

were significantly larger in absolute size among the later-born for eight polygenic scores: ADHD, age at menopause,345

cognitive ability, Coronary Artery Disease, EA2, EA3, extraversion and Major Depressive Disorder. These changes346

are inconsistent with the intergenerational change, where estimated effect sizes were larger among the earlier, parents’347

generation.348

Overall, while there is some suggestive evidence for an increase in the strength of selection in recent history, the clearest349

result is that the pattern of relative effect sizes across scores is broadly consistent over time.350

Table 3: Numbers of polygenic scores showing changes in selection effects between early and late born. Parental generation weights
multiplied by 1/number of siblings.

Change Parents’ RLRS Respondents’ RLRS
Insignificant 32 25
Size decreasing 1
Size increasing 8
Significance is measured at p < 0.05/66.
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7.6.2 Area deprivation351

Figure 13 plots effects on parents’ RLRS by Townsend deprivation quintile of birth area.352

Educ. attainment 3 (no UK)
Educ. attainment 2 (no UKBB)

Age at smoking initiation
Smoking cessation

Height
Cognitive Ability
Eating disorder

Age at menopause
Conscientiousness

Age at menarche
Agreeableness

Drinks per week
Neuroticism
Alcohol use

Bipolar
Alzheimer

Autism
Openness

Extraversion
Caffeine

Cannabis (ever vs. never)
Type 2 Diabetes

Schizophrenia
Hip circumference

Coronary Artery Disease
Cigarettes per day

Major Depressive Disorder
Body Fat

Waist-hip ratio
Waist circumference

BMI
Smoking initiation

ADHD

-0.02 -0.01 0.00 0.01 0.02
Effect size

Townsend quintile

1 (N = 16,519)

2 (N = 78,724)

3 (N = 105,509)

4 (N = 99,739)

5 (N = 82,248)

p < 0.05/165

TRUE

FALSE

95% c.i. uncorrected

Figure 13: Selection effects (parents’ RLRS) by Townsend deprivation quintile of birth area. Higher = more deprived. Weights multiplied
by 1/number of siblings.

For comparison, Figure 14 plots effects on respondents’ RLRS by Townsend deprivation quintile of birth area.353
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Figure 14: Selection effects in the respondents’ generation by Townsend deprivation quintile of birth area. Higher = more deprived.
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7.6.3 Age at first live birth354

Among the parents’ generation, we can control for age at first live birth using the subsets of respondents who reported355

their mother’s or father’s age, and who had no elder siblings. We run regressions on parents’ RLRS on these subsets.356

Figure 15 shows selection effects by terciles of age at first live birth, for mothers and fathers. As in the respondents’357

generation, effect sizes are smaller, or even oppositely signed, for older parents. Importantly, this holds for both sexes.358

Figure 16 shows the regressions controlling for either parent’s age at their birth. Effect sizes are very similar, whether359

controlling for father’s or mother’s age. As in the respondents’ generation, effect sizes are negatively correlated with the360

effect sizes from bivariate regressions without the control for age at birth (father’s age at birth: 𝜌 −0.43; mother’s age at361

birth: 𝜌 −0.59).362
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(b) Fathers

Figure 15: Selection effects (parents’ RLRS) among eldest siblings, by parents’ age at first live birth terciles. Weights multiplied by
1/number of siblings.
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Figure 16: Selection effects (parents’ RLRS) among eldest siblings, controlling for parents’ age at birth. Weights multiplied by 1/number
of siblings.
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7.7 Effects of polygenic scores on age at first live birth363

Our results suggest that polygenic scores may directly correlate with age at first live birth. Figure 17 plots estimated364

effect sizes from bivariate regressions for respondents. Figure 18 does the same for their parents, using only eldest365

siblings.8 Effect sizes are reasonably large. They are also highly correlated across generations. Effect sizes of polygenic366

scores on father’s age at own birth, and on own age at first live birth, have a correlation of 0.99; for mother’s age and367

own age it is 0.99.368
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Figure 17: Effects of polygenic scores on age at first live birth.

8Parental AFLB can only be calculated for this group.
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Figure 18: Effects of polygenic scores on parents’ age at respondent’s birth, eldest siblings. Weights multiplied by 1/number of siblings.
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7.8 Mediation analysis369

We run a standard mediation analysis in the framework of Baron and Kenny (1986). For each polygenic score where

the bivariate correlation with RLRS is significant at 𝑝 < 0.05/33, we estimate

𝑅𝐿𝑅𝑆𝑖 = 𝛼 + 𝛽𝑃𝐺𝑆𝑖 + 𝛾𝐸𝐴𝑖 + 𝑋𝑖𝜇 + 𝜀𝑖 (3)

𝐸𝐴𝑖 = 𝛿 + 𝜁𝑃 𝐺𝑆𝑖 + 𝑋𝑖𝜇 + 𝜂𝑖 (4)

where 𝑅𝐿𝑅𝑆𝑖 is relative lifetime reproductive success, 𝑃𝐺𝑆𝑖 is the polygenic score, 𝐸𝐴𝑖 is educational attainment (age370

of leaving fulltime education), and 𝑋𝑖 is a vector of controls. The total effect of 𝑃𝐺𝑆 on 𝑅𝐿𝑅𝑆 is 𝛽 + 𝛾𝜁. The “indirect371

effect” mediated by 𝐸𝐴 is 𝛾𝜁. The standard error of the indirect effect can be calculated as372

√ ̂𝛾2𝜎̂2
𝜁 + ̂𝜁2𝜎̂2𝛾

where 𝜎̂𝜁 is the standard error of ̂𝜁, etc. We include controls for age and sex in 𝑋.373

Table 4 shows results. For 22 out of 23 scores, the indirect effect on fertility via human capital is significantly different374

from 0 at 𝑝 = 0.05/23 and has the same sign as the total effect. We also calculate the proportion of the total effect375

that is mediated via the indirect effect, along with uncorrected 95% confidence intervals (100 bootstraps). Note that if376

the confidence interval for the total effect contains zero, the confidence interval for the proportion may be unbounded377

(Franz 2007).378
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Table 4: Mediation analysis

PGS Total effect Indirect effect Proportion (%) Proportion 95% c.i. (%)
ADHD 0.0262 0.0054 * 20.7 [16.5, 28.1]
Smoking initiation 0.0229 0.0046 * 20.2 [16.2, 28.5]
BMI 0.0181 0.0034 * 19.1 [14.1, 29.2]
Major Depressive Disorder 0.0146 0.0017 * 11.5 [8.1, 18.0]
Waist circumference 0.0144 0.0033 * 22.9 [16.2, 37.1]
Extraversion 0.0127 0.0006 * 4.9 [1.9, 10.6]
Hip circumference 0.0117 0.0018 * 15.5 [10.0, 33.5]
Waist-hip ratio 0.0107 0.0035 * 32.9 [21.4, 56.5]
Coronary Artery Disease 0.0106 0.0033 * 30.8 [21.1, 54.8]
Cigarettes per day 0.0088 0.0026 * 30.2 [18.4, 129.0]
Body Fat 0.0072 0.0029 * 40.8 [21.7, 120.6]
Caffeine 0.0054 0.0000 0.5 Unbounded
Cannabis (ever vs. never) 0.0049 0.0006 * 11.8 Unbounded
Alzheimer 0.0049 0.0013 * 26.6 Unbounded
Age at menopause −0.0048 −0.0012 * 25.2 Unbounded
Autism −0.0048 −0.0015 * 31.2 Unbounded
Eating disorder −0.0081 −0.0019 * 23.9 [13.7, 73.5]
Height −0.0087 −0.0020 * 23.2 [13.1, 84.1]
Smoking cessation −0.0092 −0.0028 * 30.7 [17.7, 71.5]
Cognitive Ability −0.0138 −0.0054 * 39.2 [29.1, 64.3]
Age at smoking initiation −0.0153 −0.0033 * 21.3 [15.7, 33.1]
Educ. attainment 3 (no UK) −0.0302 −0.0114 * 37.8 [30.2, 46.8]
Educ. attainment 2 (no
UKBB) −0.0305 −0.0113 * 36.9 [29.5, 46.5]

* p < 0.05/23. Analysis run on 23 PGS which correlated significantly with fertility.
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7.9 Within-siblings regressions379
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Figure 19: Selection effects controlling for sibling-group fixed effects, with and without a control for education (left education before 16,
16-18, or after 18). Each set of 29 results is from a single regression of RLRS on 29 polygenic scores. Standard errors clustered by sibling
group.

Results in the main text support our theory that natural selection on polygenic scores is driven by their correlationwith hu-380

man capital. Here, we test whether polygenic scores cause fertility by running within-siblings regressions. We run a single381

regression on 29 polygenic scores within 17161 sibling groups (N = 31169). Thus, we control both for environmental382

confounds (since scores are randomly allocated within sib-groups by meiosis), and for genetic confounds captured by383

our polygenic scores. We remove four scores which correlate highly with other scores (educational attainment 2, hip384

circumference, waist circumference and waist-hip ratio). Figure 19 shows the results.385

With a reduced sample size, all within-sibling effects are insignificant after Bonferroni correction. However, effect sizes386

are positively correlated with effect sizes from the pooled model, and about 70% smaller (regressing within-sibling387

on pooled effect sizes, 𝑏 = 0.292). This attenuation is broadly consistent with the decrease in heritability in within-388

sibling GWASs on age at first birth and educational attainment (Howe et al. 2021). We see these results as providing389

tentative evidence that polygenic scores cause fertility, with effects being partly driven by correlations with environmental390

variation in human capital. We also reran within-siblings regressions adding a control for education. Most effect sizes391

barely change, suggesting that our measure of education does not in general mediate differences in fertility among392

siblings.393
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7.10 Effects on inequality394

Table 5 shows correlations between children’s polygenic scores and household income (UKB data field 738). Column395

“With selection” uses respondents’ scores, multiplying weights by number of children. Column “Without selection”396

uses our standard weights, i.e. it estimates the counterfactual correlation if all respondents had the same number of397

children.398

Table 5: Correlations of polygenic scores with income group.

PGS
Cor. with
selection

Cor. without
selection Ratio

Educ. attainment 3 (no UK) 0.163 0.141 1.15
Educ. attainment 2 (no UKBB) 0.155 0.135 1.15
Cognitive Ability 0.058 0.053 1.08
Age at smoking initiation 0.049 0.039 1.26
Smoking cessation 0.047 0.042 1.13
Height 0.043 0.039 1.09
Eating disorder 0.020 0.018 1.10
Agreeableness 0.018 0.017 1.02
Openness 0.016 0.014 1.19
Extraversion 0.014 0.016 0.92
Age at menopause 0.014 0.012 1.18
Bipolar 0.014 0.012 1.17
Drinks per week 0.009 0.009 1.08
Alcohol use 0.005 0.006 0.83
Age at menarche 0.004 0.002 1.82
Conscientiousness 0.003 0.001 3.63
Autism −0.009 −0.009 1.00
Caffeine −0.011 −0.011 1.00
Alzheimer −0.012 −0.011 1.06
Cannabis (ever vs. never) −0.015 −0.008 1.72
Schizophrenia −0.027 −0.029 0.94
Type 2 Diabetes −0.030 −0.025 1.24
Neuroticism −0.031 −0.031 1.02
Hip circumference −0.033 −0.027 1.24
Body Fat −0.050 −0.043 1.15
Cigarettes per day −0.052 −0.043 1.22
Coronary Artery Disease −0.053 −0.039 1.33
Waist circumference −0.057 −0.048 1.18
Waist-hip ratio −0.060 −0.051 1.17
Major Depressive Disorder −0.063 −0.054 1.16
BMI −0.065 −0.052 1.24
Smoking initiation −0.074 −0.059 1.25
ADHD −0.095 −0.077 1.24
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7.11 Further results399

7.11.1 Selection effects on raw polygenic scores400

Figure 20 compares selection effects on polygenic scores residualized for the top 100 principal components of the genetic401

data, to selection effects on raw, unresidualized polygenic scores. In siblings regressions, effect sizes are larger for raw402

scores – sometimes much larger, as in the case of height. 29 out of 33 “raw” effect sizes have a larger absolute value403

than the corresponding “residualized” effect size. The median proportion between raw and controlled effect sizes is404

0.8. Among the children regressions, this no longer holds. Effect sizes are barely affected by controlling for principal405

components.406

Overall, 72.73 per cent of effect sizes are consistently signed across all four regressions (on children and siblings, and407

with and without residualization).408

To get a further insight into this we regress respondents’ and parents’ RLRS on individual principal components. Figure409

21 shows the results. Labels show the top principal components. These have larger effect sizes in siblings regressions.410

One possibility is that the parents’ generation was less geographically mobile, and so geographic patterns of childrearing411

were more correlated with principal components, which partly capture the location of people’s ancestors.412
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(b) Parents

Figure 20: Selection effects using unresidualized polygenic scores. Parental generation weights multiplied by 1/number of siblings.
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Figure 21: Selection effects of 100 principal components of genetic data. Each dot represents one bivariate regression. Parental generation
weights multiplied by 1/number of siblings. Absolute effect sizes are plotted. Points are jittered on the Y axis. Top principal components are
labelled.
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7.11.2 Genetic correlations with EA3413
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Figure 22: Selection effects plotted against genetic correlation with EA3.

Another way to examine the “earnings” theory of natural selection is to compare selection effects of polygenic scores414

with their genetic correlation with educational attainment (EA3). Since EA3 strongly predicts earnings, if earnings415

drives differences in fertility, we’d expect a correlation between the two sets of results. Figure 22 shows this is so: the416

correlation, after excluding EA2, is −0.82. Genetic correlations were calculated using LD score regression from GWAS417

summary statistics.418
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7.12 Model proofs419

Solution for the one-period model420

Differentiating and setting 𝑑𝑈
𝑑𝑁 = 0 gives the first order condition for an optimal choice of children 𝑁 ∗ > 0:421

𝑏𝑊
(𝑊(1 − 𝑏𝑁 ∗))𝜎 ≥ 𝑎, with equality if 𝑁 ∗ > 0.

Rearranging gives422

𝑁 ∗ = max{1
𝑏 (1 − ( 𝑏

𝑎)
1/𝜎

𝑊 (1−𝜎)/𝜎) , 0} . (5)

Note that when 𝜎 < 1, for high enough 𝑊 , 𝑁 ∗ = 0. Differentiating gives the effect of wages on fertility for 𝑁 ∗ > 0.423

This is also the fertility-human capital relationship:424

𝑑𝑁 ∗

𝑑ℎ = 𝑑𝑁 ∗

𝑑𝑊 = −1
𝑏 ( 𝑏

𝑎)
1/𝜎 1 − 𝜎

𝜎 𝑊 (1−2𝜎)/𝜎. (6)

This is negative if 𝜎 < 1. Also,425

𝑑2𝑁 ∗

𝑑𝑊 2 = −1
𝑏 ( 𝑏

𝑎)
1/𝜎 1 − 𝜎

𝜎
1 − 2𝜎

𝜎 𝑊 (1−3𝜎)/𝜎

For 0.5 < 𝜎 < 1, this is positive, so the effect of fertility on wages shrinks towards zero as wages increase (and becomes426

0 when 𝑁 ∗ = 0). Next, we consider the time cost of children 𝑏:427

𝑑2𝑁 ∗

𝑑𝑊𝑑𝑏 = − ( 1
𝑎)

1/𝜎
(1 − 𝜎

𝜎 )
2

(𝑊𝑏)(1−2𝜎)/𝜎 < 0.

Lastly we consider the effect of 𝑎. From (5), 𝑁 ∗ is increasing in 𝑎. Differentiating (6) by 𝑎 gives428

𝑑2𝑁 ∗

𝑑𝑎𝑑𝑊 = 𝑏1/𝜎−1 1 − 𝜎
𝜎2 𝑊 (1−2𝜎)/𝜎𝑎−1/𝜎−1

which is positive for 𝜎 < 1.429

41



Solution for the two-period model430

Period 1 and period 2 income are:

𝑌1 = 1 − 𝑠 − 𝑏𝑁1 (7)

𝑌2 = 𝑤(𝑠, ℎ)(1 − 𝑏𝑁2) (8)

Write the Lagrangian of utility 𝑈 (2) as431

ℒ(𝑁1, 𝑁2, 𝑠) = 𝑢(𝑌1) + 𝑢(𝑌2) + 𝑎(𝑁1 + 𝑁2) + 𝜆1𝑁1 + 𝜆2𝑁2 + 𝜆3(1
𝑏 − 𝑁2) + 𝜇𝑠

Lemma 5 below shows that if 𝜎 > 0.5, this problem is globally concave, guaranteeing that the first order conditions432

identify a unique solution. We assume 𝜎 > 0.5 from here on.433

Plugging (7) and (8) into the above, we can derive the Karush-Kuhn-Tucker conditions for an optimum (𝑁 ∗
1 , 𝑁 ∗

2 , 𝑠∗) as:

𝑑ℒ
𝑑𝑁1

= −𝑏𝑌 −𝜎
1 + 𝑎 + 𝜆1 = 0, with 𝜆1 = 0 if 𝑁 ∗

1 > 0; (9)

𝑑ℒ
𝑑𝑁2

= −𝑏𝑠∗ℎ𝑌 −𝜎
2 + 𝑎 + 𝜆2 − 𝜆3 = 0, with 𝜆2 = 0 if 𝑁 ∗

2 > 0, 𝜆3 = 0 if 𝑁 ∗
2 < 1

𝑏 ; (10)

𝑑ℒ
𝑑𝑠 = −𝑌 −𝜎

1 + ℎ(1 − 𝑏𝑁 ∗
2)𝑌 −𝜎

2 + 𝜇 = 0; (11)

𝑁 ∗
1 , 𝑁 ∗

2 , 𝑠∗, 𝜆1, 𝜆2, 𝜆3, 𝜇 ≥ 0; 𝑁 ∗
2 ≤ 1

𝑏 . (12)

Note that the Inada condition (that marginal utility of income grows without bound as income approaches zero,434

lim𝑥→0 𝑢′(𝑥) = ∞) for period 1 rules out 𝑠∗ = 1 and 𝑁1 = 1/𝑏, so we need not impose these constraints explicitly.435

Also, so long as 𝑁 ∗
2 < 1/𝑏, the same condition rules out 𝑠∗ = 0. We consider four cases, of which only three can occur.436
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Case 1: 𝑁 ∗
1 > 0, 𝑁 ∗

2 > 0437

Rearranging (9), (10) and (11) gives:

𝑁 ∗
1 = 1

𝑏 (1 − 𝑠∗ − ( 𝑏
𝑎)

1/𝜎
) ; (13)

𝑁 ∗
2 = 1

𝑏 (1 − ( 𝑏
𝑎)

1/𝜎
(𝑠∗ℎ)(1−𝜎)/𝜎) ; (14)

𝑠∗ = 1 − 𝑏𝑁 ∗
1

1 + ((1 − 𝑏𝑁 ∗
2)ℎ)1−1/𝜎 . (15)

Plugging the expressions for 𝑁 ∗
1 and 𝑁 ∗

2 into 𝑠∗ gives438

𝑠∗ = 𝑠∗ + ( 𝑏
𝑎 )1/𝜎

1 + (( 𝑏
𝑎 )1/𝜎 𝑠∗(1−𝜎)/𝜎ℎ1/𝜎)

1−1/𝜎

which simplifies to439

𝑠∗ = ( 𝑏
𝑎)

1/(2𝜎−1)
ℎ(1−𝜎)/(2𝜎−1). (16)

Plugging the above into (13) and (14) gives:

𝑁 ∗
1 = 1

𝑏 (1 − ( 𝑏
𝑎)

1/(2𝜎−1)
ℎ(1−𝜎)/(2𝜎−1) − ( 𝑏

𝑎)
1/𝜎

) ;

𝑁 ∗
2 = 1

𝑏 (1 − ( 𝑏
𝑎)

1/(2𝜎−1)
ℎ(1−𝜎)/(2𝜎−1)) .

Note that that 𝑁 ∗
1 < 𝑁 ∗

2 . For these both to be positive requires low values of ℎ if 𝜎 < 1 and high values of ℎ if 𝜎 > 1.440

Also:441

𝑤(𝑠∗, ℎ) ≡ 𝑠∗ℎ = ( 𝑏
𝑎)

1/(2𝜎−1)
ℎ𝜎/(2𝜎−1).

Observe that 𝑤(𝑠∗, ℎ) is increasing in ℎ for 𝜎 > 0.5, and convex iff 0.5 < 𝜎 < 1.442

While 𝑁 ∗
1 and 𝑁 ∗

2 are positive, they have the same derivative with respect to ℎ:443

𝑑𝑁 ∗
𝑡

𝑑ℎ = −1
𝑏 ( 𝑏

𝑎)
1/(2𝜎−1) 1 − 𝜎

2𝜎 − 1ℎ(1−𝜎)/(2𝜎−1)−1 (17)

Examining this and expression (16) gives:444

Lemma 1. For 𝜎 < 1, case 1 holds for ℎ low enough, and in case 1, 𝑁 ∗
1 and 𝑁 ∗

2 decrease in ℎ, while 𝑠∗ increases in ℎ.445
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For 𝜎 > 1, case 1 holds for ℎ high enough, and in case 1 𝑁 ∗
1 and 𝑁 ∗

2 increase in ℎ, while 𝑠∗ decreases in ℎ.446

𝑁 ∗
𝑡 is convex in ℎ for 𝜎 > 2/3, and concave otherwise. 𝑠∗ is convex in ℎ if 𝜎 < 2/3, and concave otherwise.447

Case 2: 𝑁 ∗
1 = 0, 𝑁 ∗

2 > 0448

Replace 𝑁 ∗
1 = 0 into the first order condition for 𝑠∗ from (11), and rearrange to give:449

𝑠∗ = 1
1 + ((1 − 𝑏𝑁2)ℎ)1−1/𝜎 .

Now since 𝑁 ∗
2 > 0, we can rearrange (10) to give450

𝑁 ∗
2 = 1

𝑏 (1 − ( 𝑏
𝑎)

1/𝜎
(𝑠∗ℎ)(1−𝜎)/𝜎) . (18)

Plugging this into 𝑠∗ gives

𝑠∗ = 1
1 + ( 𝑏ℎ

𝑎 )(𝜎−1)/𝜎2
(𝑠∗)−(1−𝜎)2/𝜎2

which can be rearranged to451

(1 − 𝑠∗)(𝑠∗)(1−2𝜎)/𝜎2 = ( 𝑎
𝑏ℎ)

(1−𝜎)/𝜎2

. (19)

Differentiate the left hand side of the above to get

1 − 2𝜎
𝜎2 (1 − 𝑠∗)(𝑠∗)(1−2𝜎)/𝜎2−1 − (𝑠∗)(1−2𝜎)/𝜎2

=1 − 2𝜎
𝜎2 (𝑠∗)(1−2𝜎)/𝜎2−1 − 𝜎2 + 1 − 2𝜎

𝜎2 (𝑠∗)(1−2𝜎)/𝜎2

=1 − 2𝜎
𝜎2 (𝑠∗)(1−2𝜎)/𝜎2−1 − (1 − 𝜎)2

𝜎2 (𝑠∗)(1−2𝜎)/𝜎2 . (20)

This is negative if and only if

𝑠∗ > 1 − 2𝜎
(1 − 𝜎)2

which is always true since 𝜎 > 0.5. Note also that since 𝜎 > 0.5, then the left hand side of (19) approaches infinity as452

𝑠∗ → 0 and approaches 0 as 𝑠∗ → 1. Thus, (19) implicitly defines the unique solution for 𝑠∗.453

To find how 𝑠∗ changes with ℎ, note that the right hand side of the above decreases in ℎ for 𝜎 < 1, and increases in ℎ for454

𝜎 > 1. Putting these facts together: for 𝜎 < 1, when ℎ increases the RHS of (19) decreases, hence the LHS decreases455
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and 𝑠∗ increases, i.e. 𝑠∗ is increasing in ℎ. For 𝜎 > 1, 𝑠∗ is decreasing in ℎ.456

To find how 𝑁 ∗
2 changes with ℎ, we differentiate (18):457

𝑑𝑁 ∗
2

𝑑ℎ = −1
𝑏 ( 𝑏

𝑎)
1/𝜎 1 − 𝜎

𝜎 (𝑠∗ℎ)(1−2𝜎)/𝜎(𝑠∗ + ℎ𝑑𝑠∗

𝑑ℎ ) (21)

which is negative for 𝜎 < 1, since 𝑑𝑠∗
𝑑ℎ > 0 in this case.458

Differentiating again:459

𝑑2𝑁2
𝑑ℎ2 = −𝑋[1 − 2𝜎

𝜎 (𝑠∗ℎ)(1−3𝜎)/𝜎(𝑠∗ + ℎ𝑑𝑠∗

𝑑ℎ )2 + (𝑠∗ℎ)(1−2𝜎)/𝜎(2𝑑𝑠∗

𝑑ℎ + ℎ𝑑2𝑠∗

𝑑ℎ2 )]

= 𝑋(𝑠∗ℎ)(1−3𝜎)/𝜎[ 2𝜎 − 1
𝜎 (𝑠∗ + ℎ𝑑𝑠∗

𝑑ℎ )2 − (𝑠∗ℎ)(2𝑑𝑠∗

𝑑ℎ + ℎ𝑑2𝑠∗

𝑑ℎ2 )]

where 𝑋 = 1
𝑏 ( 𝑏

𝑎 )1/𝜎 1−𝜎
𝜎 > 0. Note that 𝑑2𝑁2

𝑑ℎ2 is continuous in 𝜎 around 𝜎 = 1. Note also from (19) that for 𝜎 = 1,460

𝑠∗ becomes constant in 𝜎. The term in square brackets then reduces to (𝑠∗)2 > 0. Putting these facts together, for 𝜎461

sufficiently close to 1, 𝑑2𝑁∗
2

𝑑ℎ2 > 0, i.e. 𝑁 ∗
2 is convex in ℎ.462

This case holds for intermediate values on ℎ. Equation (21) shows that for 𝜎 < 1, 𝑁2 decreases in ℎ; the requirement463

that 𝑁2 > 0 therefore puts a maximum on ℎ. When 𝜎 > 1, 𝑁2 increases in ℎ and this puts a minimum on ℎ. The464

requirement 𝑁1 = 0 provides the other bound. Equation (9) requires −𝑏𝑌 −𝜎
1 + 𝑎 ≤ 0 since 𝜆1 must be non-negative.465

The LHS is increasing in 𝑌1, and hence decreasing in 𝑠 as 𝑌1 = 1 − 𝑠 since 𝑁1 = 0. Lastly, optimal choice of education466

𝑠∗ increases in ℎ for 𝜎 < 1, and decreases for 𝜎 > 1. Hence for 𝜎 < 1, (9) puts a minimum on ℎ, and for 𝜎 > 1 it puts a467

maximum on ℎ.468

Summarizing:469

Lemma 2. Case 2 holds for intermediate values of ℎ. In case 2: for 𝜎 < 1, 𝑠∗ is increasing in ℎ and 𝑁 ∗
2 is decreasing in ℎ. For 𝜎 > 1,470

𝑠∗is decreasing in ℎ. For 𝜎 close enough to 1, 𝑁 ∗
2 is convex in ℎ.471

Case 3: 𝑁 ∗
1 = 0, 𝑁 ∗

2 = 0472

We can solve for 𝑠∗ by substituting values of 𝑌1 and 𝑌2 into (11):473

−(1 − 𝑠∗)−𝜎 + ℎ(𝑠∗ℎ)−𝜎 = 0
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which rearranges to474

𝑠∗ = 1
1 + ℎ(𝜎−1)/𝜎 . (22)

Conditions (9) and (10) become:

−𝑏(1 − 𝑠∗)−𝜎 + 𝑎 ≤ 0

−𝑏𝑠∗ℎ(𝑠∗ℎ)−𝜎 + 𝑎 ≤ 0

equivalently

𝑎
𝑏 ≤ (1 − 𝑠∗)−𝜎

𝑎
𝑏 ≤ 𝑠∗ℎ(𝑠∗ℎ)−𝜎

which can both be satisfied for 𝑎/𝑏 close enough to zero. Note from (22) that as ℎ → ∞, 𝑠∗ increases towards 1 for475

𝜎 < 1, and decreases towards 0 for 𝜎 > 1. Note also that the right hand side of the first inequality above approaches476

infinity as 𝑠∗ → 1, therefore also as ℎ → ∞ for 𝜎 < 1. Rewrite the second inequality as477

𝑎
𝑏 < (𝑠∗ℎ)1−𝜎 = ( ℎ

1 + ℎ(𝜎−1)/𝜎 )
1−𝜎

= (ℎ−1 + ℎ−1/𝜎)𝜎−1

and note that again, as ℎ → ∞, the RHS increases towards infinity for 𝜎 < 1, and decreases towards zero otherwise.478

Thus, for 𝜎 < 1, both equations will be satisfied for ℎ high enough. For 𝜎 > 1, they will be satisfied for ℎ low enough.479

Summarizing480

Lemma 3. For 𝜎 < 1, case 3 holds for ℎ high enough, and in case 3, 𝑠∗ increases in ℎ. For 𝜎 > 1, case 3 holds for ℎ low enough and481

𝑠∗ decreases in ℎ.482

Case 4: 𝑁 ∗
1 > 0, 𝑁 ∗

2 = 0483

Rearranging the first order conditions (9) and (10) for 𝑁 ∗
1 and 𝑁 ∗

2 gives

𝑎
𝑏 = (1 − 𝑠∗ − 𝑏𝑁 ∗

1)−𝜎

𝑎
𝑏 ≤ 𝑠∗ℎ𝑌 −𝜎

2
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hence

(1 − 𝑠∗ − 𝑏𝑁 ∗
1)−𝜎 ≤ 𝑠∗ℎ𝑌 −𝜎

2 = (𝑠∗ℎ)1−𝜎

⇔ (1 − 𝑠∗ − 𝑏𝑁 ∗
1)𝜎 ≥ (𝑠∗ℎ)𝜎−1

⇔ 1 − 𝑠∗ − 𝑏𝑁 ∗
1 ≥ (𝑠∗ℎ)1−1/𝜎

Now rearrange the first order condition for 𝑠∗ from (11), noting that since 𝑁 ∗
2 = 0, 𝑠∗ > 0 by the Inada condition.

ℎ1/𝜎−1(1 − 𝑠∗ − 𝑏𝑁 ∗
1) = 𝑠∗

1 − 𝑠∗ − 𝑏𝑁 ∗
1 = 𝑠∗ℎ1−1/𝜎

This, combined with the previous inequality, implies

(𝑠∗ℎ)1−1/𝜎 ≤ 𝑠∗ℎ1−1/𝜎

⇔ (𝑠∗)−1/𝜎 ≤ 1

which cannot hold since 0 < 𝑠∗ < 1.484

Comparative statics485

We can now examine how the fertility-human capital relationship486

𝑑𝑁 ∗

𝑑ℎ , where 𝑁 ∗ ≡ 𝑁 ∗
1 + 𝑁 ∗

2 ,

changes with respect to other parameters. We focus on the case 𝜎 < 1, since it gives the closest match to our observations,487

and since it also generates “reasonable” predictions in other areas, e.g. that education levels increase with human capital.488

Figure 23 shows how 𝑁 ∗ changes with ℎ for 𝑎 = 0.4, 𝑏 = 0.25, 𝜎 = 0.7.489

Lemma 4. For 𝜎 < 1 in a neighbourhood of 1, 𝑁 ∗ is globally convex in ℎ.490

Proof. From Lemmas 1, 2 and 3, as ℎ increases we move from 𝑁 ∗
1 , 𝑁 ∗

2 > 0 to 𝑁 ∗
1 = 0, 𝑁 ∗

2 > 0 to 𝑁 ∗
1 = 𝑁 ∗

2 = 0.491

Furthermore, for 𝜎 > 2/3, 𝑁 ∗
1 and 𝑁 ∗

2 are convex in ℎ when they are both positive, and for 𝜎 close enough to 1, 𝑁 ∗
2492

is convex in ℎ when 𝑁 ∗
1 = 0. All that remains is to check that the derivative is increasing around the points where493

these 3 regions meet. That is trivially satisfied where 𝑁 ∗
2 becomes 0, since thereafter 𝑑𝑁∗

𝑑ℎ is zero. The derivative as 𝑁 ∗
1494
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Figure 23: Fertility vs. human capital in the two-period model with 𝑎 = 0.4, 𝑏 = 0.25, 𝜎 = 0.7.

approaches zero is twice the expression in (17):495

−2
𝑏 ( 𝑏

𝑎)
1/(2𝜎−1) 1 − 𝜎

2𝜎 − 1ℎ(1−𝜎)/(2𝜎−1)−1 (23)

and the derivative to the right of this point is given by (21):496

−1
𝑏 ( 𝑏

𝑎)
1/𝜎 1 − 𝜎

𝜎 (𝑠∗ℎ)(1−2𝜎)/𝜎(𝑠∗ + ℎ𝑑𝑠∗

𝑑ℎ ) (24)

We want to prove that the former is larger in magnitude (i.e. more negative). Dividing (23) by (24) gives497

2 𝜎
2𝜎 − 1 ( 𝑏

𝑎)
(1−𝜎)/(𝜎(2𝜎−1)) ℎ(1−𝜎)2/(𝜎(2𝜎−1))

𝑠∗(𝑠∗ + ℎ 𝑑𝑠∗
𝑑ℎ )

Examining (19) shows that as 𝜎 → 1, 𝑠∗ → 0.5 and 𝑑𝑠∗
𝑑ℎ → 0, and therefore the above approaches498

2 1
(0.5)2 = 8.

499

We can now gather the theoretical predictions stated in Table 1.500

Prediction 1: for 𝜎 < 1, total fertility 𝑁 ∗ ≡ 𝑁 ∗
1 + 𝑁 ∗

2 is decreasing in human capital ℎ.501

Furthermore, for 𝜎 close enough to 1, fertility is convex in human capital, i.e.502

Prediction 2 part 1: the fertility-human capital relationship is closer to 0 at high levels of ℎ.503
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For 𝜎 < 1, education levels 𝑠∗ increase in ℎ, and so therefore do equilibrium wages 𝑤(𝑠∗, ℎ). This, plus fact 1, gives:504

Prediction 2 part 2: for 𝜎 < 1 and close to 1, the fertility-human capital relationship is weaker among higher earners.505

Prediction 4: for 𝜎 < 1 and close to 1, the fertility-human capital relationship is weaker at high levels of education.506

Next, we compare people who start fertility early (𝑁 ∗
1 > 0) versus those who start fertility late (𝑁 ∗

1 = 0). Again, for 𝜎 < 1507

the former group have lower ℎ than the latter group. Thus we have:508

Prediction 5: for 𝜎 < 1 and close to 1, the fertility-human capital relationship is weaker among those who start fertility509

late.510

Lastly, we prove prediction 3. Differentiating 𝑑𝑁 ∗
𝑡 /𝑑ℎ in (17) with respect to 𝑏, for when 𝑁 ∗

1 > 0 gives:

𝑑2𝑁 ∗
𝑡

𝑑ℎ𝑑𝑏 = 2𝜎 − 2
2𝜎 − 1𝑏(3−4𝜎)/(2𝜎−1) ( 1

𝑎)
1/(2𝜎−1) 1 − 𝜎

2𝜎 − 1ℎ(𝜎−1)2/(𝜎(2𝜎−1))

which is negative for 0.5 < 𝜎 < 1. When 𝑁 ∗
1 = 0, differentiating 𝑑𝑁 ∗

2/𝑑ℎ in (21) gives:511

𝑑2𝑁 ∗
2

𝑑ℎ𝑑𝑏 = −1 − 𝜎
𝜎 𝑏(1−2𝜎)/𝜎 ( 1

𝑎)
1/𝜎 1 − 𝜎

𝜎 (𝑠∗ℎ)(1−2𝜎)/𝜎(𝑠∗ + ℎ𝑑𝑠∗

𝑑ℎ )

which again is negative for 𝜎 < 1. Therefore:512

Prediction 3: for 𝜎 < 1, the fertility-human capital relationship is more negative when the burden of childcare 𝑏 is513

larger.514

Including a money cost515

The model can be extended by adding a money cost 𝑚 per child. Utility is then516

𝑈 = 𝑢(1 − 𝑠 − 𝑏𝑁1 − 𝑚𝑁1) + 𝑢(𝑤(𝑠, ℎ)(1 − 𝑏𝑁2) − 𝑚𝑁2) + 𝑎(𝑁1 + 𝑁2)

Figure 24 shows a computed example with 𝑎 = 0.4, 𝑏 = 0.175, 𝜎 = 0.7, 𝑚 = 0.075. Fertility first declines steeply with517

human capital, then rises. In addition, for parents with low AFLB (𝑁1 > 0), the fertility-human capital relationship is518

negative, while for parents with higher AFLB (𝑁1 = 0) it is positive.519

Concavity520

Lemma 5. For 𝜎 > 0.5, 𝑈 in equation (2) is concave in 𝑁1, 𝑁2 and 𝑠.521
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Figure 24: Fertility vs. human capital in the two-period model with money costs of children. 𝑎 = 0.4, 𝑏 = 0.175, 𝜎 = 0.7, 𝑚 = 0.075.

Proof. We examine the Hessian matrix of utility in each period. Note that period 1 utility is constant in 𝑁2 and period522

2 utility is constant in 𝑁1. For period 1 the Hessian with respect to 𝑁1 and 𝑠 is:523

⎡
⎢
⎣

𝑑2𝑢/𝑑𝑁2
1 𝑑2𝑢/𝑑𝑠𝑑𝑁1

𝑑2𝑢/𝑑𝑠𝑑𝑁1 𝑑2𝑢/𝑑𝑠2

⎤
⎥
⎦

= ⎡
⎢
⎣

−𝜎𝑏2 −𝜎𝑏

−𝜎𝑏 −𝜎
⎤
⎥
⎦

𝑌 −𝜎−1
1

with determinant524

(𝜎2𝑏2 − 𝜎2𝑏2)𝑌 −2𝜎−2
1 = 0.

Thus, first period utility is weakly concave. For period 2 with respect to 𝑁2 and 𝑠, the Hessian is:525

⎡
⎢
⎣

𝑑2𝑢/𝑑𝑁2
2 𝑑2𝑢/𝑑𝑠𝑑𝑁2

𝑑2𝑢/𝑑𝑠𝑑𝑁2 𝑑2𝑢/𝑑𝑠2𝑑𝑁2

⎤
⎥
⎦

= ⎡
⎢
⎣

−𝜎(𝑏𝑠ℎ)2𝑌 −𝜎−1
2 −(1 − 𝜎)𝑏ℎ𝑌 −𝜎

2

−(1 − 𝜎)𝑏ℎ𝑌 −𝜎
2 −𝜎[ℎ(1 − 𝑏𝑁 ∗

2)]2𝑌 −𝜎−1
2

⎤
⎥
⎦

with determinant

(−𝜎(𝑏𝑠ℎ)2𝑌 −𝜎−1
2 )(−𝜎[ℎ(1 − 𝑏𝑁 ∗

2)]2𝑌 −𝜎−1
2 ) − (−(1 − 𝜎)𝑏ℎ𝑌 −𝜎

2 )2

=𝜎2(𝑏𝑠ℎ)2[ℎ(1 − 𝑏𝑁 ∗
2)]2𝑌 −2𝜎−2

2 − (1 − 𝜎)2(𝑏ℎ)2𝑌 −2𝜎
2

=𝜎2(𝑏ℎ)2𝑌 −2𝜎
2 − (1 − 𝜎)2(𝑏ℎ)2𝑌 −2𝜎

2 , using that 𝑌2 = (𝑠ℎ)(1 − 𝑏𝑁)

=(𝑏ℎ)2𝑌 −2𝜎
2 (𝜎2 − (1 − 𝜎)2)

which is positive if and only if 𝜎 > 0.5. Thus, if 𝜎 > 0.5 then the Hessian is negative definite and thus utility is concave;526

this combined with weak concavity of period 1, and linearity of 𝑎(𝑁1 + 𝑁2), shows that (2) is concave.527
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Effect of 𝑎528

Lemma 6. For 𝜎 < 1, 𝑑2𝑁 ∗/𝑑𝑎𝑑ℎ > 0, i.e. the effect of 𝑎 increases at higher levels of human capital.529

Proof. Differentiating (17) with respect to 𝑎 gives530

𝑑2𝑁 ∗
𝑡

𝑑𝑎𝑑ℎ = −1
𝑏

1
1 − 2𝜎 𝑎−1 (𝑎

𝑏 )
1/(1−2𝜎) 1 − 𝜎

2𝜎 − 1ℎ(1−𝜎)/(2𝜎−1)−1

for 𝑡 = 1, 2 when 𝑁 ∗
1 , 𝑁 ∗

2 > 0. For 𝜎 > 0.5 this is positive.531

When 𝑁 ∗
1 = 0, 𝑁 ∗

2 > 0, differentiating (21) with respect to 𝑎 gives532

𝑑2𝑁 ∗
2

𝑑𝑎𝑑ℎ = 1
𝑏

1
𝜎 𝑎−1 (𝑎

𝑏 )
−1/𝜎 1 − 𝜎

𝜎 (𝑠∗ℎ)(1−2𝜎)/𝜎(𝑠∗ + ℎ𝑑𝑠∗

𝑑ℎ )

which is −𝑎−1/𝜎 times (21) and hence is positive.533

534
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