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Abstract

If socio-economic status (SES) and genetic variants are both assets in marriage markets, then the two will become

associated in spouse pairs, and will be passed on together to future generations. This process provides a new ex-

planation for the surprising persistence of inequality across generations, and for the genes-SES gradient: the genetic

differences we observe between high- and low-income people. The gradient includes differences related to human

capital and to physical and mental health, so understanding its origins is important for understanding inequality in

general, and health inequalities in particular. We model social-genetic assortative mating (SGAM) and test for its ex-

istence in a large genetically-informed survey. We compare spouses of individuals with different birth order, which is

known to affect socio-economic status and which is exogenous to own genetic endowments among siblings. Spouses

of earlier-born individuals have genetic variants that predict higher educational attainment. We provide evidence

that this effect is mediated by individuals’ own educational attainment and income. Thus, environmental shocks to

socio-economic status are reflected in the DNA of subsequent generations. Our work uncovers a new channel by

which economic institutions can affect long-run inequality; suggests that genes-SES gradients may be historically

widespread; and shows that genetic variation is endogenous to social institutions.

Introduction

Over the long run, inequality is surprisingly persistent across generations (Clark and Cummins 2015; Solon 2018).

Intergenerational mobility is correlated with cross-sectional inequality (Becker et al. 2018; Krueger 2012), which

has risen dramatically in high-income countries, at the same time as intergenerational absolute mobility has declined
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(Western, Bloome, and Percheski 2008; Chetty et al. 2017).1 Assortative mating in marriage markets can increase the

inequality of human capital and income across families (Breen and Salazar 2011; Greenwood et al. 2014). It follows

that how families are formed, and transmit traits and assets to their offspring, are critical for understanding inequality.

These processes have been studied from both socio-economic and genetic angles. While educational homogamy is

well established, genetic assortative mating has been demonstrated only recently (Hugh-Jones et al. 2016; Robinson

et al. 2017). Similarly, wealthy families pass on advantages to their children through both genetic inheritance and

environmental influence (Rimfeld et al. 2018; Björklund, Lindahl, and Plug 2006).2

This paper examines a plausible, not previously analysed aspect of the spouse matching process: that both social status

and genetics contribute to a person’s attractiveness in marriage markets, and as a result, genetics and inherited social

status may become associated in subsequent generations.3 For example, suppose that wealth, intelligence and health

are positive assets in a potential spouse. Then wealthy people are more likely to marry intelligent or healthy people,

and their children will inherit both wealth, and genetic variants associated with intelligence or health. We call this

mechanism social-genetic assortative mating (SGAM). SGAM may be an important channel for the transmission of

inequality. It leads to a hidden dimension of advantage for privileged families – hidden because most social science

datasets do not include genetic information. This dimension may help to explain the surprising long-run persistence

of inequality (Clark and Cummins 2015; Solon 2018). At the same time, this advantage is not an exogenous fact of

biology, but endogenous to the social structure. Indeed, under SGAM, environmental shocks to an individual’s social

status may be reflected in the genetics of his or her children.

Below, we first outline a theoretical framework where attractiveness in the marriage market is a function of both socio-

economic status (SES) and genetic variants. We show that social-genetic assortative mating in one generation increases

the correlation between SES and genetic variants in the offspring generation. This result provides a new explanation

of the genes-SES gradient, that is, the systematic genetic differences between high- and low-SES people (Belsky et al.

2018; Rimfeld et al. 2018; Björklund, Lindahl, and Plug 2006). The dominant existing explanation for the gradient is

meritocratic social mobility: if a genetic variant predicts success in the labour market, then it will become associated

with high SES and will be inherited in high-SES families. Under meritocracy, genes causes SES. On the other hand,

under SGAM, causality goes both ways, from genes to SES and vice versa. What is more, the strength of the genes-SES

gradient depends on economic institutions. Under institutions which increase intergenerational mobility, such as high

inheritance tax rates, the genes-SES gradient becomes weaker.
1Though relative mobility has been stable (Chetty et al. 2014). In the United Kingdom the Gini coefficient has increased from 26% to 34.6%

between 1977 and 2020. The United States has seen a 10 percentage point rise to 43.3% during 1962-2013.
2See Sacerdote (2011) for a review of the behavioural genetics and economics literatures on the nature vs nurture debate; for a broader review

of intergenerational transmission of income see Black and Devereux (2010).
3Social status refers to characteristics that an individual possesses in virtue of their social position. For example, my wealth is a fact about me that

holds in virtue of my relationship to certain social institutions (bank deposits, title deeds et cetera). Other examples include caste, class, income, and
educational qualifications. Socio-economic status (SES) is a specific type of social status which exists in economically stratified societies, covering
variables such as educational attainment, occupational class, income and wealth (e.g. White 1982).
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Next, using data on matched spouses born between 1935 and 1970 from UK Biobank (a large genetically-informed

survey), we test the hypothesis that an individual’s higher social status attracts spouses with higher genetic potential

for educational attainment. Our genetic measure, the polygenic score for educational attainment (PSEA), derives

from large-scale genome-wide association studies (Lee et al. 2018). PSEA reflects a bundle of polygenic effects on

underlying traits, including intelligence, personality, and physical and mental health (Demange et al. 2021). PSEA

predicts, and causes, educational attainment itself, as well as intelligence and labour market outcomes. It is already

known that humans mate assortatively on PSEA (Hugh-Jones et al. 2016; Robinson et al. 2017), which makes it a

likely candidate for detecting SGAM.

The endogeneity of socio-economic status is the main challenge in identifying the causal effect of SES on the spouse’s

genetic endowment. For instance, individuals with high education qualifications tend to also have high PSEA, and as

mentioned above, they may take partners based on genomic similarity. Indeed, recent studies show strong assortative

mating on PSEA, much more than we would expect if spouses matched only on (our observed measures of) actual

educational attainment (Okbay et al. 2022). To isolate the causal link from own SES to partner genes, we use the

“accident of birth” as a shock to SES which is independent of own genetics. Specifically, we use an individual’s

birth order as a “treatment” which affects their partner choice through a range of mechanisms, including by affecting

their own SES. It is well documented that earlier-born children enjoy higher parental investment and have better life

outcomes, including measures of SES such as educational attainment and occupational status (Black, Devereux, and

Salvanes 2011; Booth and Kee 2009; Lindahl 2008). At the same time, the facts of biology, in particular the so-called

“lottery of meiosis”, guarantee that siblings’ birth order is independent of their genetic endowments.4

Birth order could affect partner choice both through SES, and through non-SES mechanisms. So, we run a mediation

analysis similar to Heckman, Pinto, and Savelyev (2013), decomposing the treatment effect into effects of measured

and unmeasured mediating variables. Specifically, we estimate a reduced-form model with spouse polygenic scores

for educational attainment (PSEA) as the dependent variable, and own birth order as the main independent variable.

We then estimate a model which also includes measures of own socio-economic status, including university attendance

and estimated income in one’s first job. Under certain assumptions, these variables can be interpreted as mediating the

effect of birth order on spouse genetics.

We find that later-born children have spouses with significantly lower PSEA in the reduced-form regressions. When

we add mediators, including university attendance and/or income, birth order is no longer independently significant,

while the SES mediators increase the spouse’s PSEA at 0.1% significance. University attendance explains an estimated

38-55% of the effect of birth order, and income explains about 10-13%. Thus, SES appears to mediate the effect of

birth order on spouse genetics. The results are robust to the inclusion of several controls, including non-SES mediators,
4Though Muslimova et al. (2020) find that PSEA and birth order do interact to produce human capital.
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and a rich set of own genetic traits.

Our paper contributes to several literatures. Firstly, we study a new kind of assortative mating. The economics literature

on matching in marriage markets has typically focused on educational similarities (e.g. Pencavel 1998; Chiappori,

Salanié, and Weiss 2017) or social class or caste (e.g. Abramitzky, Delavande, and Vasconcelos 2011; Banerjee et

al. 2013), but also sorting based on age, physical traits and ethnicity (Hitsch, Hortaçsu, and Ariely 2010). Matching

decisions on the marriage market follow multiple criteria, with some degree of substitutability between them.5 For

instance, Chiappori, Oreffice, and Quintana-Domeque (2012) showed that individuals trade off BMI for partners’

income or education and that the marginal rate of substitution between these characteristics is different for males and

females. The genetics literature has focused on genetic assortative mating (GAM), the phenomenon that people with

similar genes marry each other. Recent research has confirmed the long-standing conjecture that GAM takes place in

contemporary human populations (Howe et al. 2019; Hugh-Jones et al. 2016; Robinson et al. 2017). Geneticists have

also developed the concept of cross-trait assortative mating (Beauchamp et al. 2010; Sundet et al. 2005; Border et al.

2022). This happens when e.g. people with genes for height marry people with genes for intelligence, or people with

genes for two different types of disease trait marry each other. As a result, the two types of genetic variation become

associated. In this paper we bring the two literatures together, extending cross-trait assortative mating to encompass

social status as well as genetic variants. Our results confirm that individuals with higher social status attract spouses

with genetics for higher educational attainment.

Secondly, SGAM may affect economic inequality and intergenerational mobility. Clark and Cummins (2015) show

using a database of surnames that long-run intergenerational persistence of wealth, over five generations, is much higher

than would be predicted by the statistics for parent-child correlations in wealth. Clark (2021) argues that the data can

be explained by an underlying process where unobserved genetic variation determines wealth. We show below that

SGAM could also generate these patterns. The mechanism again is unobserved genetic variation, but the interpretation

is different, since we view genetic endowments not an exogenous source of variation, but as an asset effectively “traded”

in marriage markets in exchange for wealth and social status. Put another way, for Clark, in analysing the effect of

ancestral wealth on descendant wealth, genetics is a confound; under SGAM, it can be a mediator.

SGAM also affects cross-sectional inequality, like other forms of assortative mating (Fernández and Rogerson 2001;

Fernandez, Guner, and Knowles 2005; Eika, Mogstad, and Zafar 2019; Chiappori, Dias, and Meghir 2018). We know

that there is a “genes-SES gradient”: many genetic variants are associated with high or low SES. From twin studies,

the heritability of occupational class and educational attainment, i.e. the proportion of variance explained by genetic

differences between individuals, is around 50% (Tambs et al. 1989). Genome-wide Complex Trait Analysis (GCTA)
5Oreffice and Quintana-Domeque (2010) show that height and BMI are associated with spouse earnings. Dupuy and Galichon (2014) find spouse

matching on multiple independent dimensions, including education, height, BMI and personality.
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shows that the family socio-economic status of 2-year-old children can be predicted from their genes (Trzaskowski

et al. 2014). Children born into higher-income families have more genetic variants predicting educational attainment

(Belsky et al. 2018). Studies comparing adoptees to non-adoptees show that both post-birth environment and pre-

birth conditions (genetics and to a lesser extent prenatal environment) contribute to the transmission of wealth and

human capital (e.g. Björklund, Lindahl, and Plug 2006). Thus, the genes-SES gradient is an important source of

inequality. Genetic variation in human capital is key, since a likely cause of the recent rise in inequality is the increase

in market returns to human capital (e.g. Kaplan and Rauh 2013; Eika, Mogstad, and Zafar 2019). Another important

aspect of the genes-SES gradient is in genetic associations with health. DNA-derived scores predictive of several

health outcomes are associated with regional economic deprivation (Abdellaoui et al. 2019). There is a correlation

between education and health, which may be mediated by shared genetic causes (Amin, Behrman, and Kohler 2015;

Boardman, Domingue, and Daw 2015). Family SES correlates with several health-related polygenic scores (Selzam

et al. 2019), and genetic effects associated with SES significantly alter the genetic relationships between many mental

health outcomes (Marees et al. 2021). Understanding the aetiology of health and disease requires disentangling the

effects of genetics and environments. In turn, that requires understanding how the two can become correlated.

SGAM shows how marriage markets can lead high SES to be associated with different genetic variants. Thus, it can

explain the genes-SES gradient. The standard explanation for the genes-SES gradient is returns to talent in labour

markets, a.k.a. meritocracy. Parents with higher ability reap higher market returns, and they may then pass both higher

socio-economic status and their genes to their children, leading to an association between the two (Belsky et al. 2018).

This mechanism depends on the level of meritocracy in social institutions (Branigan, McCallum, and Freese 2013;

Heath et al. 1985): in a society where social status was ascribed rather than earned, it could not take effect. Indeed,

after the fall of communism in Estonia, the heritability of SES increased, presumably because post-communist society

allowed higher returns to talent (Rimfeld et al. 2018). By contrast, SGAM does not require meritocracy. Even when

social status is entirely ascribed, it may still become associated with certain genetic variants, so long as their associated

phenotypes are prized assets in marriage markets. Since meritocracy is historically rare, while assortative mating is

universal, this suggests that genes-SES gradients are likely to be historically widespread.

Bothmeritocracy and SGAMmay increase social inequality overall, if there are complementarities between genetic and

environmental components of human capital, for example if higher-ability parents make more productive investments

in children’s human capital (Cunha and Heckman 2007; Cunha, Heckman, and Schennach 2010; Heckman and Mosso

2014; Kong et al. 2018), or if high-income parents are able to invest more in transmitting their human capital (Becker

et al. 2018). Thus, by bringing “good genes” and enriched environments together, SGAM may increase inequality in

the next generation.

Lastly, we contribute to a literature in economics that examines the relationship between genetic and economic vari-
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ables. Benjamin et al. (2011) is an early review. Several more recent papers use polygenic scores, in particular

polygenic scores for educational attainment (Barth, Papageorge, and Thom 2020; Papageorge and Thom 2020; Ronda

et al. 2020). Barban et al. (2021) use PSEA as an instrument for education in a marital matching model. These pa-

pers – like the vast majority of the behavior genetics literature (see e.g. Plomin, DeFries, and McClearn 2008) – take

genetic endowments as exogenous and examine how they affect individual outcomes, perhaps in interaction with the

environment. We take a different approach by putting genetics on the “left hand side”. Thus, our paper challenges the

assumption, in economics and beyond, that genetic endowment is exogenous to economic characteristics. While this

may be tenable in within-generation studies, it ceases to hold in intergenerational models. Social-genetic assortative

mating is a causal mechanism going from socio-economic status to genes for heritable traits.

Also, our model shows that the strength of this mechanism is endogenous to social and economic institutions. When

SES is highly transmissible across the generations, this has the long-run effect of increasing the association between

SES and genetics. If so, institutional reforms that increase intergenerational mobility, like mass education or inheri-

tance taxation, may in the long run affect not only economic but genetic inequality. Conversely, an increase in economic

meritocracy increases the association between SES and genetics in the long run.6 This poses the problem raised first

by Young (1958), and more recently by Markovits (2019): meritocracy may be self-limiting or even self-undermining.

The observations behind SGAM are not new. That status and physical attractiveness assort in marriage markets is

a commonplace and a perennial theme of literature. In the Iliad, powerful leaders fight over the beautiful slave-girl

Bryseis. In Jane Austen’s novels, wealth, attractiveness and “virtue” all make a good match. Marx (1844) wrote “the

effect of ugliness, its repelling power, is destroyed by money.” And Donald Trump claimed: “part of the beauty of

me is that I am very rich.” The literature on mate preference from evolutionary psychology (Buss and Barnes 1986;

Buss 1989; Buss and Schmitt 2019) confirms that attractive mate characteristics include aspects of social status (“high

earning capacity,” “professional status”) as well as traits that are partly under genetic influence (“intelligent,” “tall,”

“kind,” “physically attractive”). Despite this, to our knowledge, this is the first paper in either genetics or economics

to formally analyse SGAM and its consequences.7

6See Proposition 4 below.
7Halsey (1958) showed in a two-class model that social mobility combined with assortative mating might increase the association between

genetics and social class. Belsky et al. (2018) offer three reasons for the association between education-linked genetics and SES, but do not consider
SGAM.
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Model

People in the marriage market have two characteristics: 𝑥 = (𝑥1, 𝑥2), drawn from a normal distribution

𝒩 ⎛⎜
⎝

0
0

,
𝑠2 𝜎
𝜎 𝑆2

⎞⎟
⎠

.

We interpret 𝑥1 as a genetic measure, for example of genes predictive of height, physical attractiveness, health or

intelligence. 𝑥2 is a measure of socio-economic status, such as income or wealth, or social status more generally (we

sometimes use “wealth” as a shorthand). The correlation between 𝑥1 and 𝑥2 is

𝐶𝑜𝑟𝑟 = 𝜎
𝑠𝑆 < 1.

People’s attractiveness is given by

𝑖 (𝑥) = 𝑎𝑥1 + (1 − 𝑎) 𝑥2

where 𝑎 ∈ [0, 1] is a parameter reflecting the relative importance of genetics to wealth in the marriage market.8

If 𝑎 = 0, marriage markets are highly inegalitarian, such that only SES matters. If 𝑎 = 1, marriage markets are
economically egalitarian and only genetics matter. We expect realistic societies to fall between these extremes, with

0 < 𝑎 < 1. Then, both genes and SES matter to attractiveness, and as a result, social-genetic assortative mating

(SGAM) takes place.

Attractiveness 𝑖 is distributed 𝑁(0, 𝜎2
𝐼), where

𝜎2
𝐼 = 𝑎2𝑠2 + (1 − 𝑎)2 𝑆2 + 2𝑎 (1 − 𝑎) 𝜎.

People form matches with transferable utility, where the surplus for a match between 𝑥 and 𝑦 is 𝑆(𝑖(𝑥), 𝑖(𝑦)) such
that 𝜕2𝑆/𝜕𝑖𝜕𝑗 > 0, i.e. 𝑆 is supermodular. As a result there is positive assortative mating on attractiveness: 𝑥
matches with 𝑦 only if they are at the same quantile of attractiveness, i.e. if 𝑖(𝑥1, 𝑥2) = 𝑖(𝑦1, 𝑦2). We describe this as

social-genetic assortative mating (SGAM).

We also consider random matching as a benchmark to compare against SGAM. Under random matching, the distribu-
8Note that since the variance of the shocks to 𝑥1 and 𝑥2 (see below) has been normalized to 1, 𝑎 also reflects this variance. That is, a large

variance of SES shocks (compared to genetic shocks) translates into 𝑎 being large.
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tion of couples’ characteristics is normal with mean 0 and covariance matrix

ℂ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 0 0
𝜎 𝑆2 0 0
0 0 𝑠2 𝜎
0 0 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Our first proposition shows that if SGAM is taking place, i.e. if 0 < 𝑎 < 1, then there is a positive correlation between
one partner’s wealth and the other partner’s genetics.

Proposition 1. Under SGAM, the distribution of couples’ characteristics is normal, with mean 0 and covariance matrix

ℂ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 𝐴2 𝐴𝐶
𝜎 𝑆2 𝐴𝐶 𝐶2

𝐴2 𝐴𝐶 𝑠2 𝜎
𝐴𝐶 𝐶2 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1)

where:

𝐴 = 𝑎𝑠2 + (1 − 𝑎) 𝜎
√𝑎2𝑠2 + (1 − 𝑎)2 𝑆2 + 2𝑎 (1 − 𝑎) 𝜎

= 𝑎𝑠2 + (1 − 𝑎) 𝜎
𝜎𝐼

;

𝐶 = 𝑎𝜎 + (1 − 𝑎) 𝑆2

√𝑎2𝑠2 + (1 − 𝑎)2 𝑆2 + 2𝑎 (1 − 𝑎) 𝜎
= 𝑎𝜎 + (1 − 𝑎) 𝑆2

𝜎𝐼
.

In particular, the covariance between 𝑥2 and 𝑦1, 𝐴𝐶 , is positive if either 𝑥1 and 𝑥2 are already correlated (𝜎 > 0)
or if they are uncorrelated (𝜎 = 0) and the attractiveness parameter 𝑎 is strictly between 0 and 1.

Proof. See Appendix.

We consider the distribution of couples’ wealth. Under random matching this has mean 0 and variance 2𝑆2. Under

SGAM, the variance is:

𝑉 (𝑥2 + 𝑦2) = 2𝑆2 + 2𝐶2 > 2𝑆2

This is decreasing in 𝑎 and equals 4𝑆2 if 𝑎 = 0. Thus, SGAM increases cross-sectional inequality, but less so than

pure matching on wealth.
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Children

All couples have the same number of children. A child’s characteristics are given by:

𝑥′
1 = 𝜏

2 (𝑥1 + 𝑦1) + 𝜀 (2)

𝑥′
2 = 𝜃

2 (𝑥2 + 𝑦2) + 𝜂

where 𝑥 and 𝑦 are the child’s parents, and 𝜀 and 𝜂 are independent normal random shocks with mean 0 and variance 1.

Parameter 𝜏 ≈ 1 reflects genetic inheritance. Under standard biological assumptions 𝜏 = 1 and characteristics show

no regression to the mean. In our model this leads the variance of 𝑥1 to grow without limit over generations. In reality,

we expect 𝜏 < 1 because very extreme characteristics are selected against, a process known as stabilizing selection

(Schmalhausen 1949; Sanjak et al. 2018).

Parameter 𝜃 ∈ [0, 1] reflects inheritance of SES. Unlike 𝜏 it may vary between societies. 𝜃 is high when there is high
intergenerational transmission of SES. Thus, 𝜃 captures social and economic institutions that affect this intergenera-

tional transmission, from taxation and public education to hereditary nobility. If we interpret 𝑥2 narrowly as wealth,

(1 − 𝜃) can be thought of as the rate of inheritance tax.

For the time being, we assume that a person’s genetic endowment has no impact on their SES. Technically, thus, 𝑥′
2

does not directly depend on 𝑥′
1. In a meritocratic society we would expect adult SES to partly depend on genetics.

We show that even absent meritocracy, correlations between 𝑥′
1 and 𝑥′

2 can arise. In an extension below, we relax this

assumption and allow meritocracy.

We can now calculate the covariance matrix for 𝑥′ = (𝑥′
1, 𝑥′

2) under SGAM as:

ℂ = ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠

+ ⎛⎜
⎝

𝜏
2 0 𝜏

2 0
0 𝜃

2 0 𝜃
2

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 𝐴2 𝐴𝐶
𝜎 𝑆2 𝐴𝐶 𝐶2

𝐴2 𝐴𝐶 𝑠2 𝜎
𝐴𝐶 𝐶2 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2𝜏 0
0 1

2𝜃
1
2𝜏 0
0 1

2𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1
2𝐴2𝜏2 + 1

2𝑠2𝜏2 + 1 1
2𝜃𝜎𝜏 + 1

2𝐴𝐶𝜃𝜏
1
2𝜃𝜎𝜏 + 1

2𝐴𝐶𝜃𝜏 1
2𝐶2𝜃2 + 1

2𝑆2𝜃2 + 1
⎞⎟
⎠

(3)
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We now explore two issues. First, under SGAM, genetic characteristics are no longer exogenous; because of assortative

matching, they are (partly) socially determined. In particular, even if genetics and SES are uncorrelated among parents,

the expected genetic endowment of the child is positively related to parental SES. Second, as a result, in the long run

a correlation appears between traits; that is, high SES people inherit genes that are attractive in marriage markets.

Regarding point 1, we compute the expected genetic characteristic of the child, conditional on parental wealth:

𝔼 [𝜏
2 (𝑥1 + 𝑦1) + 𝜀 ∣ 𝑥2 = 𝑣, 𝑦2 = 𝑤]

Given the symmetry of the model, this conditional expectation only depends on the parents’ total wealth, i.e. 𝑣 + 𝑤.

Claim 1. Under random matching, the expected genetic endowment of the children is proportional to the parents’ SES

and to the covariance between SES and genetics for the parents. In particular, if 𝜎 = 0 (i.e. genetics and SES are

uncorrelated for the parents), then the expected genetic endowment of the children does not depend on parental SES.

Claim 2. Under SGAM, if 𝜎 = 0 (i.e. genetics and SES are uncorrelated for the parents), then the expected genetic

endowment of the children is linearly increasing in parental SES. The relationship increases with the ratio of genetic

variance to SES variance, is zero for 𝑎 = 0 or 𝑎 = 1, and is highest for intermediate values of 𝑎.

Next, we study the correlation between children’s traits 1 and 2 as a function of 𝜎, the covariance of parents’ traits. We

first consider the general case, then concentrate on 𝜎 = 0, i.e. when traits are initially uncorrelated.

Claim 3. Under random matching, the correlation between characteristics is smaller for children than for parents. In

particular, if genetics and SES are uncorrelated for the parents, then they are uncorrelated for the children.

Claim 4. Under SGAM, if genetics and SES are uncorrelated for the parents, then they are positively correlated for

the children so long as 0 < 𝑎 < 1. The correlation is increasing in 𝜃.

Whether characteristics are more or less correlated for children than for parents depends on whether the initial corre-

lation between parents’ characteristics is larger or smaller than the asymptotic one, derived below.

Figure 1 shows the intuition behind the model. Parents match on downward-sloping attractiveness isoquants given by

𝑎𝑥1 +(1−𝑎)𝑥2 = 𝑢. Their children are in between them on both dimensions. This compresses the distribution along

the attractiveness isoquants, which leads to a positive correlation between genetics and SES. The correlation between

𝑥′
1 and 𝑥′

2 is 0 when 𝑎 = 0 or 𝑎 = 1, because then spouses don’t trade off SES for genes. It is highest for intermediate
values of 𝑎.

These results show that SGAM can lead to a genes-SES gradient, i.e. a positive correlation between genes and SES.

Also, the strength of the genes-SES correlation is affected by economic institutions, as captured in 𝜃. When 𝜃 is high,
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x2

x1

Parents

x2

x1

Children

Figure 1: Theory. The shaded area is the population distribution. Parents (solid circles) match along attractiveness
isoquants (dotted lines). Children (hollow circles) are between them. As a result, in the children’s generation, the
distribution is squeezed along attractiveness isoquants.

the genes-SES correlation is high too.

We now consider the asymptotic distribution of 𝑥1 and 𝑥2 when the matching process is repeated over many genera-

tions. As we would expect, our main results continue to hold.

Proposition 2. Under random matching, the dynamics converges to a stationary distribution that is normal with mean

zero and covariance matrix

ℂ ⎛⎜
⎝

𝑥1

𝑥2

⎞⎟
⎠

= ⎛⎜
⎝

2
2−𝜏2 0

0 2
2−𝜃2

⎞⎟
⎠

In particular, the traits are asymptotically uncorrelated and children’s expected genetic endowment is independent of

parents’ wealth.

Proposition 3. Under SGAM, for 𝜃 < 1 and 𝜏 < 1, the dynamics converge to a stationary distribution that is normal
with mean zero and covariance matrix

ℂ ⎛⎜
⎝

𝑥1

𝑥2

⎞⎟
⎠

= ⎛⎜
⎝

̄𝑠2 𝜎̄
𝜎̄ ̄𝑆2

⎞⎟
⎠

Moreover, the asymptotic correlation between characteristics, 𝑐𝑜𝑟𝑟 = 𝜎̄/ ̄𝑠 ̄𝑆, is non-negative, positive for 0 < 𝑎 < 1,
increasing in 𝜃 and increasing then decreasing in 𝑎. The coefficient of parents’ wealth on children’s genetics is also

positive for 0 < 𝑎 < 1.

For 𝜃 = 1, the dynamics diverge and ̄𝑆2 goes to +∞; for 𝜏 = 1, the dynamics diverges and ̄𝑠2 goes to +∞.

Figure 2 plots the asymptotic correlation between 𝑥1 and 𝑥2 for 𝜏 = 0.95.
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Figure 2: Long-run correlation between genetics 𝑥1 and SES 𝑥2, by weight of genetics in matching 𝑎 and SES inheri-
tance 𝜃. 𝜏 = 0.95.

Note that both ̄𝑆2 and 𝜎̄, as well as the correlation between characteristics and the conditional expectation of genetics
given wealth, are increasing in 𝜃, i.e. decreasing in the tax rate. Higher taxation reduces the asymptotic variance of
wealth (not surprisingly), but also the correlation between genetics and wealth.

Extensions

We consider three extensions. First, the relative attractiveness of genes and SES might differ for men and women. Our

basic result extends to this setup.

Claim 5. Suppose that men’s and women’s attractiveness is given by

𝑖(𝑥) = 𝑎𝑥1 + (1 − 𝑎)𝑥2,

𝑗(𝑦) = 𝑏𝑦1 + (1 − 𝑏)𝑦2

respectively, with 0 ≤ 𝑎 ≤ 1, 0 ≤ 𝑏 ≤ 1. Then if 𝜎 = 0, children’s characteristics 𝑥′
1 and 𝑥′

2 will be positively

correlated unless 𝑎 = 𝑏 = 0 or 𝑎 = 𝑏 = 1. The correlation is increasing in 𝜃.

Interestingly, the 𝑥1-𝑥2 correlation is highest when 𝑎 and 𝑏 are most different from each other. So gender differences

in what counts as attractive make the effects of SGAM stronger. Intuitively, if one sex only assorts on SES while the

other sex only assorts on genetics, this induces a very reliable correlation between genes and SES in couples, since

12



(e.g.) every high-SES male is matched for sure with a high-genetics female.

Second, in modern meritocracies, people’s adult SES depends not just on their parents’ social status and on chance,

but also on their own effort and skills, which might be related to their genetics. So, let

𝑥′
1 = 𝜏 𝑥1 + 𝑦1

2 + 𝜀

𝑥′
2 = 𝛾𝑥′

1 + 𝜃𝑥2 + 𝑦2
2 + 𝜂 (4)

where 𝛾 > 0 represents the effect of own genetics on own SES. The basic result continues to hold, and also, the degree
of meritocracy 𝛾 increases the correlation between genes and SES; a highly meritocratic society may in the long run

lead to a highly unfair genes-SES gradient.

Proposition 4. Under SGAM and equation (4), if genetics and SES are uncorrelated for the parents, then they are

positively correlated for the children so long as 0 < 𝑎 < 1 or 𝛾 > 0. The correlation is increasing in 𝛾. Also, so long
as 𝛾 > 0 and either 0 < 𝑎 < 1 or 𝜎 > 0, the coefficient of parents’ wealth on children’s wealth exceeds 𝜃.

Surprisingly, in this case, the children’s genes-SES correlation is not always increasing in 𝜃. The reason is that when
𝛾 is high, a higher 𝜃 decreases the proportion of 𝑥′

2 that comes via 𝛾 from own genetics, and increases the proportion

that comes from parents’ SES, which may be less strongly correlated with own genetics. Figure 3 plots the correlation

for 𝛾 = 0.15, by 𝑎 and 𝜃. However, computing the asymptotic correlation shows that it is increasing in 𝜃 for all but

values of 𝜃 very close to 1.

Third, we consider non-normal distributions of 𝑥1 and 𝑥2, non-normal shocks 𝜀 and 𝜂, and non-linear attractiveness
functions. Suppose

𝑖(𝑥) = 𝑓(𝑎𝑥1, (1 − 𝑎)𝑥2) (5)

with 𝑓 strictly increasing in both its arguments. Our sole condition on the distribution of 𝑥 is that a positive measure

of the population has attractiveness 𝑖(𝑥) = 𝑖 where the distribution of (𝑥1, 𝑥2)|𝑖 is non-degenerate, i.e. not everybody
with attractiveness 𝑖 is both genetically and socially identical. In particular, this allows for discrete distributions, like
some kinds of social status.

Proposition 5. Let attractiveness be given by (5). Let (𝑥1, 𝑥2) have any distribution such that a positive measure of
the population has 𝑖(𝑥) = 𝑖 where the conditional distribution of (𝑥1, 𝑥2)|𝑖(𝑥) = 𝑖 is non-degenerate. Let 𝜂 and 𝜀 be
mean 0 and independent of 𝑥 and each other. If genetics and SES are uncorrelated for the parents, then the correlation

among children is non-negative, and strictly positive if 0 < 𝑎 < 1.

Other extensions are possible. We assumed that all couples have the same number of children. If fertility increased
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Figure 3: Correlation between children’s genetics 𝑥′
1 and children’s SES 𝑥′

2, by weight of genetics in matching 𝑎 and
SES inheritance 𝜃, for meritocracy 𝛾 = 0.15. Other parameters: 𝜏 = 0.95, 𝑠 = 𝑆 = 1, 𝜎 = 0.

with 𝑥1 or 𝑥2, we would expect this to reduce the variance of traits in the children’s generation and possibly also their

covariance. Here, matching preferences, as summarized in the 𝑎 parameter, are exogenous. It would be natural to

model 𝑎 as an equilibrium outcome. For example, if parents care about their children’s wealth, 𝑎 might decrease in 𝜃
and increase in 𝛾. Lastly, a gene-environment interaction (e.g. 𝑥′

2 = 𝛾𝑥′
1 + 𝜃 𝑥2+𝑦2

2 + 𝜁𝑥′
1

𝑥2+𝑦2
2 ) might increase the

gene-environment correlation some more.

Discussion

The meanings of both social status, and “good genes” in the marriage market, are likely to vary across societies. Social

status could encompass variables like social class or caste; ethnic identity in “ranked” ethnic systems; or in modern

societies, SES, including wealth, income and occupation. Regarding genetics, standards of physical attractiveness, and

other genetically-influenced characteristics which make someone a “good match”, vary across societies and over time.

The central prediction of the model is that whatever those characteristics, in the long run they will become correlated

with SES.

Recent empirical work shows high persistence of SES over time, in particular at the top. Clark (2021) argues that this

is due to unobserved genetic variation. Proposition 4 shows that if genes affect own wealth directly, under assortative

mating, the regression coefficient of parents’ wealth on own wealth exceeds the “direct” coefficient 𝜃, because parents’
wealth correlates with parents’ genetics and via that with own wealth. Thus, regressions of wealth on wealth may
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include the effect of unobserved genetic variation. This may be a confound due to pre-existing gene-SES correlation

(if 𝜎 > 0). But under SGAM it can also be a genuine cause, since changes in someone’s wealth may indeed affect the

identity of their spouse, and therefore the genetics of their offspring.

The converse also holds: regressions of children’s characteristics on their genetics alone risk overestimating the effect

of genetics, by confounding it with the effects of correlated socio-economic status. Recent work in genetics has shown

this. Polygenic scores for educational attainment have smaller effects in between-sibling regressions, where between-

family variation in SES is partialled out and where genetic variants are guaranteed to be randomly allocated, than in

regressions which pool the whole sample (Howe et al. 2021). Parents’ genetic variants which are not passed on to

children predict children’s characteristics, via environmental effects (Kong et al. 2018).

The model predicts variation in the strength of SGAM. In particular, in “caste societies” where there is complete en-

dogamy within social status groups, there is no scope for SGAM, because marriage partners do not trade off genetics

for social status. Also, SGAM is increased by the institutional variable 𝜃, which captures intergenerational persistence
of SES. This implies that policy has long-run effects on the social structure: reducing 𝜃 not only increases intergener-
ational mobility, but reduces the correlation of genes with SES, and hence the unfairness of what Harden (2021) calls

the “genetic lottery”.

Data and methods

In modern societies, both SGAM and meritocratic mobility may be at play. Genetic variants that cause higher SES,

e.g. higher income and wealth, will be passed down along with that status. At the same time, higher SES and “good

genes” will assort in the marriage market. To test this, we look at correlations among spouses between one partner’s

SES and the other partner’s genetics.

We use data from the UK Biobank, a study of about 500,000 individuals born between 1935 and 1970 (Bycroft et

al. 2018). The Biobank contains information on respondents’ genetics, derived from DNA microarrays, along with

questionnaire data on health and social outcomes. The Biobank does not contain explicit information on spouse pairs.

We categorize respondents as pairs if they:

• had the same home postcode on at least one occasion;9

• both reported the same homeownership/renting status, length of time at the address, and number of children;

• attended the same UK Biobank assessment center on the same day;

• both reported living with their spouse (“husband, wife or partner”);

• consisted of one male and one female.
9A typical UK postcode contains about 15 properties.
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We also eliminate all pairs where either spouse appeared more than once in the data. This leaves a total of 35,682 pairs.

Some of these could be false positives, i.e. people who are not each others’ spouse but simply live in the same postcode.

To validate the accuracy of our pairs, we use genetic relationships. Some respondents in the UK Biobank sample have

a child (inferred from genetic data) who is also in the sample. Among our spouse pairs, 511 have a genetic child of at

least one partner in the sample. For 441 of these, the child is the genetic child of both partners. If this subsample is

representative, then at least 86% of the pairs who have had a child, have had a child together. This is a lower bound,

because those who had a child with someone else may also have had a child with their partner who is not in the UK

Biobank sample. As a point of comparison, 11% of families with dependent children included a stepchild in England

and Wales in 2011 (National Statistics 2014).

It is still possible that some pairs in our data may not be actual spouses. In the appendix, to sign any possible bias

in our estimates resulting from this, we use a dataset of “known fake” pairs. We show that estimated coefficients of

interest are closer to zero among these fake pairs than among our candidate “real pairs”. Because of this, any fake pairs

remaining in our data are likely to bias our coefficients towards zero.

Our key dependent variable is spouse’s Polygenic Score for Educational Attainment (PSEA). A polygenic score is a

DNA-derived summary measure of genetic risk or propensity for a particular outcome, created from summing small

effects of many common genetic variants, known as Single Nucleotide Polymorphisms (SNPs). We focus on PSEA

rather than other polygenic scores for two reasons. First, educational attainment plays a key role in human mate search.

People are attracted to educated potential partners (Buss and Barnes 1986; Belot and Francesconi 2013); spouse pairs

often have similar levels of educational attainment, as well as similar PSEA (Vandenberg 1972; Schwartz and Mare

2005; Greenwood et al. 2014; Hugh-Jones et al. 2016). Second, PSEA predicts a set of important socioeconomic

variables, including not only education but also social and geographic mobility, IQ, future income and wealth (Belsky

et al. 2016; Barth, Papageorge, and Thom 2020; Papageorge and Thom 2020).10

We calculate PSEA using per-SNP summary statistics from Lee et al. (2018), re-estimated excluding UK Biobank

participants.11 We normalize the score to have mean 0 and variance 1. Because polygenic scores are created from

estimates of many presumably tiny effects, they contain a large amount of noise relative to the true best estimator that

could be derived from genetic data. For instance, PSEA explains only 11–13% of variance in educational attainment

(out of sample, Lee et al. 2018), whereas the true proportion explained by genetic variation – the heritability – is

estimated from twin studies to be about 40% (Branigan, McCallum, and Freese 2013). In addition, polygenic scores

are no more guaranteed to be causal than any other independent variable. For example, social stratification by ancestry
10See Papageorge and Thom (2020) for a detailed discussion of polygenic scores, aimed at economists.
11PSEA was computed by summing the alleles across ~1.3 million genetic variants weighted by their effect sizes as estimated in genome-wide

association studies (GWASs) that excluded UK Biobank. PSEA was then residualized on the first 100 principal components of the SNP array data.
Further details can be found in Abdellaoui et al. (2019).
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may lead genes to be associated with educational attainment even if they play no causal role (Selzam et al. 2019).

Despite these points, PSEA has non-trivial estimated effects on educational attainment. PSEA correlates with measures

of education, including university attendance and years of full-time education; within-siblings regressions, where PSEA

is randomly assigned by the “lottery of meiosis”, confirm this correlation is at least partly causal (Lee et al. 2018).

We recheck these facts within the UK Biobank sample. In a simple linear regression (N = 408,524) of university

attendance on PSEA, a one-standard-deviation increase in PSEA was associated with a 9.2 percentage point increase

in the probability of university attendance (𝑝 < 2×10−16). In a within-siblings regression among genetic full siblings

(N = 36,748), the increase was 4.5 percentage points (𝑝 < 2 × 10−16). This suggests that about half of the raw

correlation of PSEA with university attendance is down to confounds like good environments or parental nurture,

while the remainder is causal. Still, the causal effect remains substantial: for a rough comparison, the (ITT) effect on

college attendance of the Moving To Opportunity experiment in the US was 2.5 percentage points (Chetty, Hendren,

and Katz 2016).

We use two measures of socio-economic status: income, and university attendance. Income is a direct measure of SES.

University attendance is a predictor of income over the whole life course, and a form of SES in itself. The UK Biobank

data only contains a direct measure of current household income, which is inappropriate for our purposes because

it includes income from both spouses and is measured after marriage. Instead, we estimate income in £000s in the

respondent’s first job, by matching the job’s Standard Occupational Classification (SOC) code with average earnings

by SOC from National Statistics (2007). Job codes are only available for a subset of 7681 respondents among our

pairs.

Figure 4 illustrates the core idea of SGAM within our pair data. The X axis shows a measure of one partner’s socio-

economic status: university attendance or income. The Y axis plots the other partner’s mean PSEA. Both males and

females who went to university had spouses with higher PSEA. So did males and females with higher income in their

first job. Since DNA is inherited, these people’s children will also have higher PSEA.

These figures do not prove that SGAM is taking place. Since an individual’s own PSEA correlates with both their

educational attainment, and their income, both figures could be a result of genetic assortative mating (GAM) alone

(Hugh-Jones et al. 2016). Indeed, recent studies showmuch higher levels of GAM than could be explained bymatching

on the observed education phenotype alone (Okbay et al. 2022). So, to demonstrate SGAM, we need a source of social

status which is exogenous to genetics. Also, the link between social status and spouse genetics is likely to be noisy, for

three reasons: first, polygenic scores contain a large amount of error, as discussed above; second, causal mechanisms

behind variation in social status are likely to be noisy; third, to paraphrase Shakespeare (1595), the spouse matching

process is highly unpredictable. So, we need a large N to give us sufficient power. This rules out time-limited shocks
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Figure 4: Spouse PSEA against own university attendance and own income in first job. Lines show 95% confidence
intervals.
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such as changes to the school leaving age (Davies et al. 2018).

We use birth order. It is known that earlier-born children receive more parental care and have better life outcomes,

including measures of SES such as educational attainment and occupational status (Lindahl 2008; Booth and Kee 2009;

Black, Devereux, and Salvanes 2011). On the other hand, all full siblings have the same ex ante expected genetic

endowment from their parents, irrespective of their birth order. This is guaranteed by the biological mechanism of

meiosis, which ensures that any gene is transmitted from either the mother or the father to the child, with independent

50% probability (Mendel 1865; Lawlor et al. 2008). For example, siblings’ expected polygenic score is equal to

the mean of their parents’ polygenic scores.12 We can therefore use birth order as a “shock” to social status. We put

“shock” in quotes because we do not claim that birth order is exogenous to all other variables. For example, it naturally

correlates with parental age, and it may also correlate with household SES at the time of birth. We only claim that birth

order is exogenous to genetic variation.

Our main independent variable is respondents’ birth order, i.e. their number of elder siblings plus one. For controls

we use family size, i.e. respondents’ total number of siblings including themselves; month of birth; age at interview;

respondents’ own PSEA; and their father’s and/or mother’s age at their birth (calculated from parent’s current age, only

available if the parent was still alive). For most regressions, we use only respondents with between 1 and 5 siblings,

i.e. with a family size of 2-6.

Decomposing the birth order effect on spouse genetics

Ideally, we might prefer to use birth order as an instrument for SES. However, our measures of social status are noisy

and incomplete. For example, we know whether subjects attended university, but not which university. Birth order

likely affects both measured and unmeasured aspects of SES. So, an instrumental variables approach would be likely

to fall foul of the exclusion restriction.

Instead, we conduct a mediation analysis, following the strategy of Heckman, Pinto, and Savelyev (2013). We first

confirm statistically that birth order affects our measures of respondents’ SES (income and education). Then, we

regress spouse’s PSEA on birth order, with and without controlling for SES. Under the assumption that birth order is

exogenous to own genetics, these regressions identify the effect of birth order, plus other environmental variables that

correlate with it, on own social status and spouse’s genetics. Also, if the estimated effect of birth order on spouse’s

PSEA changes when SES is controlled for, that is evidence that SES mediates the effect of birth order.

We follow Heckman, Pinto, and Savelyev (2013) to decompose the aggregate treatment effect into components due to
12Although genetic variation is randomly assigned to children at birth, genetics and birth order could be dependent if parents’ choice of whether

to have more children is endogenous to the genetic endowment of their earlier children. We check for this below. Isungset et al. (2021) also find
that birth order differences in education are not genetic.
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observed and unobserved proximate channels affected by the treatment. Our aim is to estimate the effect of SES (as

an effect of birth order) on spouse PSEA.

Assume 𝐵 is a multivalued variable indicating birth order. Let 𝑌𝑏 be the counterfactual outcome (spouse PSEA) for

the first-born, second-born etc. Given 𝑏, spouse PSEA is assumed to be independent across observations conditional

on some predetermined controls which are assumed not to be affected by 𝐵.

Let 𝑚𝑏 be a set of mediators, i.e. proximate outcomes determined by 𝑏, which account (at least in part) for the 𝑏
treatment effect on spouse PSEA. We can think of 𝑚𝑏 as all the effects on attractiveness, such as increments to SES,

health, cognitive and non-cognitive skills, that individuals receive due to their birth rank. We can split the mediators

in 𝑚𝑏 into a set 𝐽𝑚 of measured mediators, including university attendance and income in first job, and a set 𝐽𝑢 of

mediators that we cannot measure.

Our linear model is:

𝑌𝑏 = 𝜅𝑏 + ∑
𝑗∈𝐽𝑚

𝛼𝑗
𝑏𝑚𝑗

𝑏 + ∑
𝑗∈𝐽𝑢

𝛼𝑗
𝑏𝑚𝑗

𝑏 + X′𝜷𝐛 + ̃𝜀𝑏 = 𝜏𝑏 + ∑
𝑗∈𝐽𝑚

𝛼𝑗
𝑏𝑚𝑗

𝑏 + X′𝜷𝐛 + 𝜀𝑏 (6)

where ̃𝜀𝑏 is a mean-zero residual assumed independent of 𝑚𝑏 and X; 𝜏𝑏 = 𝜅𝑏 + ∑𝑗∈𝐽𝑢
𝛼𝑗

𝑏𝐸(𝑚𝑗
𝑏); and 𝜀𝑏 = ̃𝜀𝑏 +

∑𝑗∈𝐽𝑢
(𝑚𝑗

𝑏 − 𝐸(𝑚𝑗
𝑏)). We simplify by assuming that 𝛽𝑏 = 𝛽 and 𝛼𝑏 = 𝛼 for all 𝑏, i.e. that the effects of X and 𝑚𝐵

don’t differ by birth order.13 We assume differences in unmeasured investments due to 𝑏 are independent of X.

We use a linear model for each observed mediator variable:

𝑚𝑗
𝑏 = 𝜇0,𝑗 + X′𝝁𝟏,𝐣 + 𝜇2,𝑗 ⋅ 𝑏 + 𝜂𝑗, 𝑗 ∈ 𝐽𝑚 (7)

where 𝜂𝑗 is a mean-zero residual. We also assume the treatment-specific intercepts are linear in 𝑏:

𝜏𝑏 = 𝜏0 + 𝜏𝑏. (8)

With the simplifying assumptions above and substituting (7) and (8) into (6) we obtain:

𝑌𝑏 = 𝜏0 + 𝜏𝑏 + ∑
𝑗∈𝐽𝑚

𝛼𝑗(𝜇0,𝑗 + X′𝝁𝟏,𝐣 + 𝜇2,𝑗 ⋅ 𝑏 + 𝜂𝑗) + X′𝜷 + 𝜀𝑏 (9)

13Under the assumption that measured and unmeasured mediators are uncorrelated, we can test these assumptions by running an OLS regression
of an extended model (11) where we interact the measured mediators and controls with the treatment 𝐵, and test the significance of the coefficients
on the interaction terms (𝜶𝐛 = 0 and 𝜷𝐛 = 0). See Heckman, Pinto, and Savelyev (2013) and Fagereng, Mogstad, and Rønning (2021) for details
and different applications. When we run the model with interactions, only one interaction is significant after Bonferroni correction at 𝑝 < 0.05/34:
the interaction of income in first job with the dummy for birth order 6. So overall, the uninteracted model seems a good enough approximation.
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Using equation (9), we can decompose the average treatment effect of a change from birth order 𝑏 to 𝑏′ into the effect

of measured mediators 𝑚𝑗 and unmeasured mediators on the outcome:

𝐸(𝑌 ′
𝑏 − 𝑌𝑏) = 𝜏(𝑏′ − 𝑏) + ∑

𝑗∈𝐽𝑚

𝛼𝑗𝐸(𝑚𝑗
𝑏′ − 𝑚𝑗

𝑏) = 𝜏(𝑏′ − 𝑏)⏟
Effect of unmeasured mediators

+ ∑
𝑗∈𝐽𝑚

𝛼𝑗𝜇2,𝑗(𝑏′ − 𝑏)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Effect of measured mediators

(10)

We are primarily interested in estimating the effect of SES on spouse PSEA, amongst the measured mediators, and

furthermore we would like to measure the relative importance of SES compared to other factors in predicting spouse

PSEA.

We therefore estimate:

𝑌 = 𝜏0 + 𝜏𝐵 + ∑
𝑗∈𝐽𝑚

𝛼𝑗𝑚𝑗
𝑏 + X′𝜷 + 𝜀 (11)

Estimating the above by OLSwill generate unbiased estimates of𝛼𝑗 if𝑚𝑗 is measured without error and is uncorrelated

with the error term 𝜀. Since 𝜀 contains both individual disturbances and differences in unmeasured investments due

to birth order, there are two identifying assumptions that need to hold for unbiased OLS estimates: (a) the measured

investments (specifically SES) should be independent of unmeasured investments generated by birth order. Failing this,

the estimates of𝛼𝑗 will be conflated with the effects of unmeasured investments. Second, (b) the measured investments

should be uncorrelated with other shocks ̃𝜀𝑏.

By running a least square regression of (11), we can estimate 𝜏 and 𝛼𝑗. If assumption (a) holds, the part of the birth

order treatment effect on spouse PSEA that is due to measured mediators, including SES, can be constructed using the

estimated 𝛼𝑗 and the effects of birth order on measured mediators. We can estimate these effects in a second step, from

OLS regressions based on equation (7) for each measured mediator (in particular university attendance and income)

on X and 𝐵. The part of the birth order effect that is due to university attendance (or income) on spouse PSEA will be

the coefficient of university/income in the regression of spouse PSEA in equation (11), multiplied by the coefficient of

birth order on university/income from equation (7).

Results

We first regress our measures of socio-economic status, university attendance and income from first job, on birth order

in our sample. We also do the same for four non-SES mediators that could be affected by birth order: fluid IQ, height,

bodymass index (BMI) and ameasure of self-reported health. We control for respondent’s own PSEA and their parents’

age at birth (see below). Table 1 shows that birth order significantly predicts all these variables. Effect sizes are quite

21



Table 1: Regressions of mediators on birth order

University Income Fluid IQ Height BMI Health

Birth order −0.0790 *** −1.0899 * −0.2733 *** −0.7012 *** 0.1907 ** −0.0430 ***

(0.0067) (0.4264) (0.0304) (0.1355) (0.0662) (0.0103)

PSEA 0.0889 *** 1.5144 *** 0.3180 *** 0.1970 * −0.4281 *** 0.0533 ***

(0.0046) (0.3307) (0.0200) (0.0921) (0.0456) (0.0068)

Parents’ age
at birth 0.0163 *** 0.2623 *** 0.0588 *** 0.1514 *** −0.0989 *** 0.0110 ***

(0.0012) (0.0722) (0.0053) (0.0241) (0.0117) (0.0018)

Family size
dummies Yes Yes Yes Yes Yes Yes

Birth month
dummies Yes Yes Yes Yes Yes Yes

Birth year
dummies Yes Yes Yes Yes Yes Yes

N 10220 3412 10220 10220 10220 10220

R2 0.074 0.026 0.058 0.017 0.023 0.018

Estimates from OLS regressions with the mediators (university attendance, income, fluid IQ, height, BMI,
self-reported health) as dependent variables, and own birth order as the main independent variable. PSEA is the
polygenic score for educational attainment, which is normalized with mean 0 and standard deviation 1. We include
parents’ age at birth (the mean of parents’ ages) and further controls to ensure the balance of covariates across
birth order. All data is from the UK Biobank for a sample of UK individuals born between 1935 and 1970. *** p
< 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.

substantial: on average, one extra elder sibling reduces the chance of attending university by about 7.9 percentage

points, income by about £1,089, fluid IQ by about 0.27 points on a 13 point test, height by about 0.7 centimeters, and

self reported health by 0.043 points on a 4-point scale; and increases BMI by 0.19.

Next we run regressions of spouse PSEA on birth order, within our dataset of spouse pairs. Table 2 reports the results.

Column 1 reports results controlling only for family size (using dummies). As expected, higher birth order is negatively

associated with spouse’s PSEA, though the estimated effect size is small and insignificant. Column 2 reports results

controlling for the respondent’s own PSEA, as well as dummies for birth year to control for cohort effects, and dummies

for birth month to control for seasonal effects. The effect size of birth order is not much changed.

Column 3 reports results controlling for parents’ age at birth. Within a family, later children have older parents by

definition. Older parents have more life experience and may have higher income, which would presumably help later
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children.14 Including parents’ age means we can separate the effect of parental age from birth order. This reduces the N

by a lot, since only respondents with a live parent reported the necessary data. However, the effect of birth order jumps

in size and becomes significant at the 5 per cent level. Meanwhile, parents’ age has a positive effect. This suggests that

estimates in columns 1-2 mixed two opposite-signed effects: having older parents versus being later in birth order.

Table 2: Regressions of spouse PSEA on birth order

(1) (2) (3)

Birth order −0.0091 −0.0075 −0.0314 *

(0.0074) (0.0074) (0.0146)

Own PSEA 0.0650 *** 0.0573 ***

(0.0065) (0.0100)

Parents’ age at birth 0.0116 ***

(0.0026)

Family size dummies Yes Yes Yes

Birth month dummies No Yes Yes

Birth year dummies No Yes Yes

N 23840 23797 10206

R2 0.003 0.010 0.013

Estimates from OLS regressions with spouse PSEA as dependent variable, and own birth order as the
main independent variable. PSEA is the polygenic score for educational attainment, which is
normalized with mean 0 and standard deviation 1. We include own PSEA, parents’ age at birth (the
mean of parents’ ages), and further controls (family size, birth year, and birth month dummies)
in columns 2−3 to ensure the balance of covariates across birth order. All data is from the UK
Biobank for a sample of UK individuals born between 1935 and 1970. *** p < 0.001; ** p < 0.01; *
p < 0.05; + p < 0.1. Standard errors: robust.

Having tested that birth order affects spouse’s PSEA, we now look for potential mediators of this effect. Despite the

lower N, we continue to control for respondents’ parents’ age, since this removes a confound which would bias our

results towards zero.15

Table 3 shows the results. Column 1 shows the effect of birth order, using the same specification as column 3 of the

previous table. The remaining columns add potential mediators of birth order effects. Column 2 controls for our first

measure of socio-economic status: university attendance. We also include potential non-SES mediators, which are
14We often only have data only for one parent. We use this, or take the mean if we have both. There are also potential genetic effects from parental

age, though recent research has rejected these in favour of “social” explanations (Kristensen and Bjerkedal 2007; Black, Devereux, and Salvanes
2011). Cochran and Harpending (2013) report that mutational load is approximately linear in father’s age, while it is constant in mother’s age. We
observe very similar results if we control only for father’s age at respondent’s birth.

15The appendix reports results without controlling for parents’ age.
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affected by birth order and might affect spouse matching: fluid IQ, height, BMI and self-reported health. Column 3

adds our second measure of socio-economic status, income in first job. Column 4 includes both.

When we add university attendance and other mediators (column 2), the effect of birth order drops and becomes

insignificant, while the coefficient for university is positive and highly significant. Fluid IQ, height and BMI are also

positive and significant, while self-reported health has the right sign but is insignificant. Controlling for income instead

of university attendance (column 3), again the effect of birth order shrinks and becomes insignificant, while income

has a positive and highly significant effect. Lastly, the same pattern holds when we control for both university and

income (column 4).

Under the assumptions discussed above, we can estimate the proportion of the birth order effect that is mediated by

these variables. Table 4 reports this for each model in columns 2-4. Each estimate is the coefficient of birth order on

the mediator, times the coefficient of the mediator on spouse PSEA, divided by the coefficient of birth order on spouse

PSEA estimated from column 1, i.e. without mediators. Education explains about 38-55 percent of the effect, much

more than all the other mediators. Income, fluid IQ, height and BMI all explain between 6 and 17 percent of the effect,

depending on the specification.

These results provide evidence that birth order affects spouse PSEA via education and income, with education being

especially important.

Our next regressions split up the data into subsets. Cultural stereotypes often assume that the link between status and

genes is not symmetric across the genders, for example, that males with high SES are particularly likely to marry

attractive spouses. Claim 5 showed that these differences would strengthen the effects of SGAM. To test for this, we

separately regress female spouses’ PSEA on male birth order, and male spouses’ PSEA on female birth order. We also

rerun regressions among the subset of individuals who had children. A significant result here will confirm that the

association between status and genetics is carried over into the next generation.

Table 5 shows the results. Columns 1 and 2 present results using birth order of male respondents to predict female

spouses’ PSEA. Column 1 shows the regression of birth order plus controls; in column 2, we add university attendance

and non-SES mediators (here, we exclude first job income so as to keep our N large). Columns 3 and 4 repeat the

exercise for female respondents, using their birth order to predict male spouses’ PSEA. The effect of birth order is

imprecisely estimated in these subsets due to the lower sample size. However, the pattern of coefficient sizes is the

same as in the main regression: the coefficient of birth order is about -0.3, and adding university attendance reduces

the absolute size of the birth order effect. Columns 5 and 6 show results from regressions on the subsample of couples

with children. Here, birth order is significant in the base specification, and again, university attendance still seems to

mediate the birth order effect.
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Table 3: Regressions of spouse PSEA on birth order and mediators

(1) (2) (3) (4)
Birth order −0.0314 * −0.0045 −0.0106 −0.0042

(0.0146) (0.0146) (0.0270) (0.0270)
University 0.2179 *** 0.1538 ***

(0.0225) (0.0377)
Income 0.0037 *** 0.0031 **

(0.0011) (0.0011)
Fluid IQ 0.0172 ** 0.0201 * 0.0112

(0.0053) (0.0094) (0.0097)
Height 0.0029 ** 0.0046 * 0.0043 *

(0.0011) (0.0020) (0.0019)
BMI −0.0109 *** −0.0114 ** −0.0109 **

(0.0022) (0.0040) (0.0040)
Self-reported
health 0.0181 0.0145 0.0077

(0.0151) (0.0272) (0.0271)
Own PSEA 0.0573 *** 0.0263 ** 0.0218 0.0118

(0.0100) (0.0101) (0.0184) (0.0185)
Parents’ age at
birth 0.0116 *** 0.0053 * 0.0091 + 0.0078 +

(0.0026) (0.0026) (0.0047) (0.0047)
Family size
dummies Yes Yes Yes Yes
Birth month
dummies Yes Yes Yes Yes
Birth year
dummies Yes Yes Yes Yes
N 10206 10206 3407 3407
R2 0.013 0.032 0.030 0.034
logLik −14297.465 −14197.703 −4810.934 −4802.396
AIC 28694.930 28505.406 9731.869 9716.791
Estimates from OLS regressions with spouse PSEA as dependent variable, and own birth order and
mediators (university attendance and income) as the main independent variables. Columns 2−4
correspond to model 7. PSEA is the polygenic score for educational attainment, which is normalized
with mean 0 and standard deviation 1. We include own PSEA, mean of parents’ ages at birth, potential
non-SES mediators (fluid IQ, height, BMI, self-reported health) and further controls (family size, birth
year, and birth month dummies) to ensure the balance of covariates across birth order. All data is from
the UK Biobank for a sample of UK individuals born between 1935 and 1970. *** p < 0.001; ** p <
0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
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Table 4: Percent of birth order effects accounted for by mediators, models 2-4

Model 2 (%) Model 3 (%) Model 4 (%)
University 54.9 38.7
Income 13.0 10.6
Fluid IQ 15.0 17.6 9.7
Height 6.6 10.4 9.5
BMI 6.6 7.0 6.6
Self-reported health 2.5 2.0 1.1
Percentage of the effects of birth order in Table 3, columns 2 to 4, explained by
by each mediating variable.
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Table 5: Regressions of spouse PSEA on birth order: subsets

Male
respondents

Male
respondents

Female
respondents

Female
respondents With children With children

Birth order −0.030 −0.001 −0.031 −0.009 −0.035 * −0.007
(0.022) (0.022) (0.019) (0.019) (0.015) (0.015)

University 0.272 *** 0.169 *** 0.217 ***
(0.033) (0.031) (0.024)

Fluid IQ 0.019 * 0.015 * 0.022 ***
(0.008) (0.007) (0.006)

Height 0.004 0.004 + 0.002 *
(0.002) (0.002) (0.001)

BMI −0.008 * −0.012 *** −0.011 ***
(0.004) (0.003) (0.002)

Self-reported
health 0.028 0.010 0.022

(0.022) (0.021) (0.016)
Own PSEA 0.059 *** 0.022 0.057 *** 0.030 * 0.062 *** 0.029 **

(0.015) (0.015) (0.014) (0.014) (0.011) (0.011)
Parents’ age at
birth 0.013 ** 0.005 0.011 ** 0.005 0.013 *** 0.006 *

(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)
Family size
dummies Yes Yes Yes Yes Yes Yes
Birth month
dummies Yes Yes Yes Yes Yes Yes
Birth year
dummies Yes Yes Yes Yes Yes Yes
N 4675 4675 5531 5531 9127 9127
R2 0.017 0.043 0.017 0.031 0.015 0.035
Estimates from OLS regressions corresponding to columns 1 and 2 in Table 3, separately for males, females and
respondents with children. Spouse PSEA is the dependent variable, and own birth order and university attendance
are the main independent variables. PSEA is the polygenic score for educational attainment, which is normalized
with mean 0 and standard deviation 1. We include own PSEA, parents’ age at birth (the mean of parent’s ages) and
further controls (family size, birth year, and birth month dummies) to ensure the balance of covariates across birth
order. All data is from the UK Biobank for a sample of UK individuals born between 1935 and 1970. *** p <
0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
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Robustness

Although all children of the same parents have the same polygenic scores in expectation, it might still be possible that

genetics correlates with birth order within the sample. This could happen in three ways. First, siblings with high birth

order will typically come from larger families than those with low birth order, and parents of different-sized families

are likely to differ systematically on many dimensions, including genetics. We controlled for this by including a full

set of family size dummies in the regression. Second, there could be selection bias. For example, if later siblings with

high PSEA, and earlier siblings with low PSEA, are more likely to enter the sample, then this would bias our results.

Thirdly, parents might choose family size in a way related to genetics. For example, suppose that when the first child

has a phenotype reflecting a high PSEA, parents are more likely to have a second child. Then within the subset of

two-child families, first children would have higher-than-average PSEA, while second children would not.

To check for the latter two problems, we run balance tests on 33 different polygenic scores.16 We regress each score on

own birth order, controlling for family size. No scores were significant at 𝑝 < 0.10/33. Four scores were significant
at 𝑝 < 0.10, all with effect sizes of less than 0.02 per standard deviation. Table 9 in the appendix reports regressions
controlling for these scores. Results are almost unchanged. To test whether polygenic scores might vary across birth

orders within a particular family size, we also regress each score on a full set of birth order dummies, interacted with

a full set of family size dummies. None of the 495 birth order coefficients were significant at 𝑝 < 0.001. However,
among families of size 3, there is a marginally significant positive correlation of birth order with own PSEA (effect size

0.0277, 𝑝 = 0.06). Table 11 in the appendix therefore reports regressions with families of size 3 excluded. Results are
substantially unchanged. Of course, there could still be unmeasured genetic variants which correlate with birth order

in our sample. Nevertheless, a wide set of polygenic scores shows no large or significant correlation. This makes us

more confident that birth order is indeed exogenous to genetics.

Another concern is that our chosen SES mediators might not be exogenous. We have already seen that birth order

affects intelligence, height, BMI and health. So there might be other unobserved variables which mediate the effect

of birth order on spousal PSEA, and which correlate with education or income, but which do not themselves capture

SES. If so, that would threaten our claim that education and income are important mediators. However, the effects of

education on spouse PSEA in Table 3, and of birth order on education in Table 1, are both large and highly significant.

In other literature on spouse matching, education is a common, robust and significant predictor. For these admittedly

informal reasons, we think that our results are unlikely to be driven wholly by other unobserved mediators.
16Polygenic scores were residualized on the first 100 principal components of the genetic data. Scores were for: ADHD, age at menarche, age at

menopause, agreeableness, age at smoking initiation, alcohol use, Alzheimer’s, autism, bipolarity, BMI, body fat, caffeine consumption, cannabis
(ever vs. never), cognitive ability, conscientiousness, coronary artery disease, smoking (cigarettes per day), type II diabetes, drinks per week, edu-
cational attainment (EA2 and EA3), anorexia, extraversion, height, hip circumference, major depressive disorder, neuroticism, openness, smoking
cessation, schizophrenia, smoking initiation, waist circumference, and waist-to-hip ratio. For full details of score construction, see Abdellaoui et al.
(2019).
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The appendix reports other robustness checks, including a specification with separate dummies for each value of birth

order, and replacing university attendance with age of leaving full-time education. The basic pattern that birth order

coefficients shrink after adding SES mediators appears robust across our variations.

Conclusion

Our empirical analysis shows that in a contemporary developed society, individuals with fewer elder siblings had

spouses with higher PSEA. We also provide evidence that these effects are mediated by socio-economic status, specif-

ically income and education. We interpret this as evidence of social-genetic assortative mating (SGAM).

There are multiple mechanisms by which advantage is transmitted across generations. High-income parents may invest

more in their children’s human capital, transfer wealth via gifts and bequests, model valuable skills, or provide them

with advantageous social networks. They may also pass on causally relevant genetic variants. This channel has been

proposed as a reason for the surprising persistence of inequality over generations (Clark and Cummins 2015; Clark

2021). One problem with this theory is that in the absence of assortative mating, genetic variation regresses swiftly

to the mean, with coefficient 𝑟 = 0.5 per generation. Thus to explain long-run persistence, the genetic theory seems

to require very high levels of genetic assortative mating. SGAM may help to solve this puzzle. Persistence will be

increased if, in addition to genetic assortative mating, high SES itself attracts “good genes”. At the same time, SGAM

changes the interpretation of genetics. As our model shows, genetic variation is not an exogenous input into the social

system, but an endogenous outcome – not a confound for wealth, but a mediator.

SGAM also provides a new explanation for the observed association of genes with SES. Unlike meritocratic social

mobility, the leading alternative explanation, SGAM may apply to a historically wide range of societies. Whilst a

degree of meritocracy exists in modern capitalist economies, opportunities to earn status have been far more limited

in most societies throughout history (Smelser and Lipset 1966). On the other hand, assortative mating is likely to be

a cultural universal (Buss 1989). Thus, SGAM predicts that genetic differences across social status should exist in all

stratified societies. In fact, people in many societies have believed that innate traits do vary by social status. The ancient

Greeks described the social elite as καλοί κἀγαθοί (“fine and good”), while the Roman nobility were the optimates

(“best”).17 This belief has been explained by the tendency to believe in a just world (Furnham 1993), or as an ideology

promoted by the dominant class (e.g. Gramsci 1971). However, it may also simply have been a recognition of (social)

reality. In other words, the belief that elites are taller, stronger, better-looking, etc. is not much different from the belief

that elites are richer and more powerful, and may be held for similar reasons. In future, it may be possible to directly

test for genetic differences across social status in ancient DNA samples.
17The appendix contains a selection of relevant historical quotations.
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In our model, the association between SES and genetic variation depends on economic and social institutions. Institu-

tions that make wealth more persistent across generations also increase the correlation between SES and genetics. If

so, then institutional differences may have long run effects over generations by altering the genes-SES gradient. There

could be hysteresis, with initial social differences cumulating over time via their effect on genetic inequality. On the

other hand, increases in the level of meritocracy paradoxically also strengthen the genes-SES gradient, suggesting a

deep conflict between meritocracy and egalitarianism. Lastly, the structure of marriage markets also affects the gra-

dient. We have not been able to test these comparative statics here: doing so across societies is a challenge for future

work.

The broadest message of this paper is that genetics are a social outcome. Both popular and scientific discourse often

parse genetics as “nature”, in opposition to “nurture” or “environment” (e.g. Chakravarti and Little 2003; Plomin

2019). This reflects the fact that our individual genetic endowment is fixed at birth, affects our body and brain through

proximate biological mechanisms, and cannot be changed by our social environment (though genes always interact with

the environment to cause individual outcomes). But the idea that human genetics are natural can be highly misleading.

Humans inherit their genes from their parents, along with other forms of inheritance such as economic and cultural

capital. Human parents, in turn, form spouse pairs and bear children within social institutions. A person’s genetic

inheritance is a social and historical fact about them, not just a fact of nature. As Marx (1844) wrote, “History is the

true natural history of man”. Genetic endowments can even be viewed as another form of capital, alongside human,

social and cultural capital: a resource to be sought, accumulated and competed over. The analysis of this kind of capital

is an exciting area for further research, which will require the contributions of both economists and geneticists.
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Proofs

Proof of Proposition 1. By a change of variable, rewrite:

⎛⎜
⎝

𝑥1

𝑥2

⎞⎟
⎠

→ ⎛⎜
⎝

𝑥1

𝑢
⎞⎟
⎠

where 𝑢 = 𝑎𝑥1 + (1 − 𝑎) 𝑥2

√𝑎2𝑠2 + (1 − 𝑎)2 𝑆2 + 2𝑎 (1 − 𝑎) 𝜎
= 𝑎𝑥1 + (1 − 𝑎) 𝑥2

𝜎𝐼

is the attractiveness rescaled to 𝒩(0, 1). Thus,

⎛⎜
⎝

𝑥1

𝑢
⎞⎟
⎠

= ⎛⎜
⎝

1 0
𝑎/𝜎𝐼 (1 − 𝑎)/𝜎𝐼

⎞⎟
⎠

⎛⎜
⎝

𝑥1

𝑥2

⎞⎟
⎠

.

Note that the means are still zero, but the covariance of (𝑥1, 𝑢) is:

ℂ ⎛⎜
⎝

𝑥1

𝑢
⎞⎟
⎠
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⎝

1 0
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⎞⎟
⎠
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⎞⎟
⎠
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⎝

𝑠2 𝐴
𝐴 1

⎞⎟
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where

𝐴 = 𝑎𝑠2 + (1 − 𝑎) 𝜎
√𝑎2𝑠2 + (1 − 𝑎)2𝑆2 + 2𝑎 (1 − 𝑎) 𝜎

= 𝑎𝑠2 + (1 − 𝑎) 𝜎
𝜎𝐼

.

Under SGAM, individual ⎛⎜
⎝

𝑥1

𝑢
⎞⎟
⎠

is matched with ⎛⎜
⎝

𝑦1

𝑣
⎞⎟
⎠

such that 𝑢 = 𝑣 = 𝑡.

The distribution of 𝑡 is 𝒩 (0, 1). Therefore the vector
⎛⎜⎜⎜⎜⎜
⎝

𝑥1

𝑦1

𝑡

⎞⎟⎟⎟⎟⎟
⎠

is normally distributed, with mean 0, and covariance

Σ =
⎛⎜⎜⎜⎜⎜
⎝

𝑠2 𝐴2 𝐴
𝐴2 𝑠2 𝐴
𝐴 𝐴 1

⎞⎟⎟⎟⎟⎟
⎠
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Finally, we are interested in
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⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
− 𝑎

1−𝑎 0 𝜎𝐼
1−𝑎

0 1 0
0 − 𝑎

1−𝑎
𝜎𝐼

1−𝑎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

𝑥1

𝑦1

𝑡

⎞⎟⎟⎟⎟⎟
⎠

therefore again the means are 0 and

ℂ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
− 𝑎

1−𝑎 0 𝜎𝐼
1−𝑎

0 1 0
0 − 𝑎

1−𝑎
𝜎𝐼

1−𝑎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
− 𝑎

1−𝑎 0 𝜎𝐼
1−𝑎

0 1 0
0 − 𝑎

1−𝑎
𝜎𝐼

1−𝑎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑇

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 𝐴2 𝐴𝐶
𝜎 𝑆2 𝐴𝐶 𝐶2

𝐴2 𝐴𝐶 𝑠2 𝜎
𝐴𝐶 𝐶2 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where:

𝐴 = 𝑎𝑠2 + (1 − 𝑎) 𝜎
𝜎𝐼

and

𝐶 = 𝑎𝜎 + (1 − 𝑎) 𝑆2

𝜎𝐼
.

Lemma 1. 𝐶2 ≤ 𝑆2, with strict inequality if 𝑎 > 0 and 𝜎 < 1.

Proof. Write

𝐶2 = 𝑎2𝜎2 + (1 − 𝑎)2𝑆4 + 2𝑎(1 − 𝑎)𝜎𝑆2

𝑎2𝑠2 + (1 − 𝑎)2𝑆2 + 2𝑎(1 − 𝑎)𝜎

≤ 𝑎2𝑠2𝑆2 + (1 − 𝑎)2𝑆4 + 2𝑎(1 − 𝑎)𝜎𝑆2

𝑎2𝑠2 + (1 − 𝑎)2𝑆2 + 2𝑎(1 − 𝑎)𝜎 , since 𝜎/𝑠𝑆 = 𝐶𝑜𝑟𝑟(𝑥1, 𝑥2) ≤ 1

= 𝑆2

and observe that the inequality is strict if 𝑎 > 0 and 𝜎 < 𝑠𝑆.
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Proof of Claim 1. Under random matching, the joint distribution of ( 𝜏
2 (𝑥1 + 𝑦1) + 𝜀, 𝑥2, 𝑦2) is normal with mean

(0, 0, 0) and covariance

ℂ =
⎛⎜⎜⎜⎜⎜
⎝

𝜏2
2 (𝑠2 + 𝜎) + 1 𝜏

2 𝜎 𝜏
2 𝜎

𝜏
2 𝜎 𝑆2 0
𝜏
2 𝜎 0 𝑆2

⎞⎟⎟⎟⎟⎟
⎠

Using the matrix formula for the conditional mean of normal variables,

𝔼 [𝜏
2 (𝑥1 + 𝑦1) + 𝜀 ∣ 𝑥2 = 𝑣, 𝑦2 = 𝑤] = ( 𝜏

2 𝜎 𝜏
2 𝜎 ) ⎛⎜

⎝

𝑆2 0
0 𝑆2

⎞⎟
⎠

−1

⎛⎜
⎝

𝑣
𝑤

⎞⎟
⎠

= 𝜎𝜏
2𝑆2 (𝑣 + 𝑤)

In particular, if 𝜎 = 0, this expectation is equal to 0.

Proof of Claim 2. From (3), the joint distribution of ( 𝜏
2 (𝑥1 + 𝑦1) + 𝜀, 𝑥2, 𝑦2) is normal with mean (0, 0, 0) and

covariance

Σ =
⎛⎜⎜⎜⎜⎜
⎝

1
2𝜏2 (𝐴2 + 𝑠2) + 1 𝜏

2 (𝜎 + 𝐴𝐶) 𝜏
2 (𝜎 + 𝐴𝐶)

𝜏
2 (𝜎 + 𝐴𝐶) 𝑆2 𝐶2

𝜏
2 (𝜎 + 𝐴𝐶) 𝐶2 𝑆2

⎞⎟⎟⎟⎟⎟
⎠

Therefore

𝔼 [𝜏
2 (𝑥1 + 𝑦1) + 𝜀 ∣ 𝑥2 = 𝑣, 𝑦2 = 𝑤] = ( 𝜏

2 (𝜎 + 𝐴𝐶) 𝜏
2 (𝜎 + 𝐴𝐶) ) ⎛⎜

⎝

𝑆2 𝐶2

𝐶2 𝑆2
⎞⎟
⎠

−1

⎛⎜
⎝

𝑣
𝑤

⎞⎟
⎠

= 1
2𝜏 𝜎 + 𝐴𝐶

𝐶2 + 𝑆2 (𝑣 + 𝑤) (12)

In particular, if 𝜎 = 0, we have

𝐴 = 𝑎𝑠2

√𝑎2𝑠2 + (1 − 𝑎)2 𝑆2
and

𝐶 = (1 − 𝑎) 𝑆2

√𝑎2𝑠2 + (1 − 𝑎)2 𝑆2
,
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and (12) becomes

𝔼 [𝜏
2 (𝑥1 + 𝑦1) + 𝜀 ∣ 𝑥2 = 𝑣, 𝑦2 = 𝑤] = 1

2𝜏 𝑎 (1 − 𝑎) 𝑠2

𝑎2𝑠2 + 2 (1 − 𝑎)2 𝑆2
(𝑣 + 𝑤)

= 1
2𝜏 𝑎 (1 − 𝑎) 𝜆

𝑎2𝜆 + 2 (1 − 𝑎)2 (𝑣 + 𝑤)

where 𝜆 = 𝑠2/𝑆2 is the ratio of genetic variance to wealth variance. The coefficient 𝑎(1−𝑎)𝜆
𝑎2𝜆+2(1−𝑎)2 is increasing, then

decreasing in 𝑎 and is 0 for 𝑎 = 0 or 𝑎 = 1.

Proof of Claim 3. Under random matching, the covariance matrix for children’s characteristics is:

ℂ = ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠

+ ⎛⎜
⎝

𝜏
2 0 𝜏

2 0
0 𝜃

2 0 𝜃
2

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 0 0
𝜎 𝑆2 0 0
0 0 𝑠2 𝜎
0 0 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2𝜏 0
0 1

2𝜃
1
2𝜏 0
0 1

2𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1
2𝑠2𝜏2 + 1 1

2𝜃𝜎𝜏
1
2𝜃𝜎𝜏 1

2𝑆2𝜃2 + 1
⎞⎟
⎠

so that the correlation between characteristics for children is:

𝐶𝑜𝑟𝑟 (𝑥′
1, 𝑥′

2) =
1
2𝜃𝜎𝜏

√1
2𝜏2𝑠2 + 1√1

2𝜃2𝑆2 + 1

Note that 𝜎 = 0 gives a zero correlation for children as well. Also, because 𝜃 < 1 and 𝜏 < 1, the correlation is less
than the parents’ correlation of 𝜎/𝑠𝑆.

Proof of Claim 4. Again applying (3), under SGAM, the correlation between children’s traits is:

𝐶𝑜𝑟𝑟 (𝑥′
1, 𝑥′

2) =
1
2𝜃𝜏 (𝜎 + 𝐴𝐶)

√1
2𝜏2 (𝐴2 + 𝑠2) + 1√1

2𝜃2 (𝐶2 + 𝑆2) + 1

This is positive if 𝜎 = 0 so long as 𝐴𝐶 > 0 i.e. 0 < 𝑎 < 1. To show it is increasing in 𝜃, strip out constant terms
and take the derivative of

𝜃
√1

2𝜃2(𝐶2 + 𝑆2) + 1
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The derivative is signed by

(1
2𝜃2(𝐶2 + 𝑆2) + 1)

0.5
− 1

2𝜃2(𝐶2 + 𝑆2) (1
2𝜃2(𝐶2 + 𝑆2) + 1)

−0.5

> (1
2𝜃2(𝐶2 + 𝑆2) + 1)

0.5
− (1

2𝜃2(𝐶2 + 𝑆2) + 1) (1
2𝜃2(𝐶2 + 𝑆2) + 1)

−0.5

= 0.

Proof of Proposition 2. The fixed point condition on the covariance matrix is

⎛⎜
⎝

𝑠2 𝜎
𝜎 𝑆2

⎞⎟
⎠

= ⎛⎜
⎝

1
2𝑠2𝜏2 + 1 1

2𝜃𝜎𝜏
1
2𝜃𝜎𝜏 1

2𝑆2𝜃2 + 1
⎞⎟
⎠

which gives

𝑠2 = 2
2 − 𝜏2 , 𝑆2 = 2

2 − 𝜃2 , 𝜎 = 0.

The asymptotic conditional expectation of children’s genetics given parental SES is:

𝔼 [𝜏
2 (𝑥1 + 𝑦1) + 𝜀 ∣ 𝑥2 = 𝑣, 𝑦2 = 𝑤] = 0

since the traits 𝑥1, 𝑥2, 𝑦1, 𝑦2 are uncorrelated.

Proof of Proposition 3. Start by characterizing the invariant distribution. This must satisfy:

⎛⎜
⎝

𝑠2 𝜎
𝜎 𝑆2

⎞⎟
⎠

= ⎛⎜
⎝

1
2𝜏2 (𝐴2 + 𝑠2) + 1 1

2𝜃𝜏 (𝜎 + 𝐴𝐶)
1
2𝜃𝜏 (𝜎 + 𝐴𝐶) 1

2𝜃2 (𝐶2 + 𝑆2) + 1
⎞⎟
⎠

where

𝐴 = 𝑎𝑠2 + (1 − 𝑎) 𝜎
√𝑎2𝑠2 + (1 − 𝑎)2 𝑆2 + 2𝑎 (1 − 𝑎) 𝜎̄

and

𝐶 = 𝑎𝜎 + (1 − 𝑎) 𝑆2

√𝑎2𝑠2 + (1 − 𝑎)2 𝑆2 + 2𝑎 (1 − 𝑎) 𝜎̄
,
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Note that if the distribution converges, 𝑠2 and 𝑆2 must be above 1. Also, for 𝐴 and 𝐶 to have a real-valued solution,

it must be that 𝑎2𝑠2 + (1 − 𝑎)2𝑆2 + 2𝑎(1 − 𝑎)𝜎 > 0; using this,

𝐴𝐶 = 𝑎2𝑠2𝜎 + (1 − 𝑎)2𝑆2𝜎 + 𝑎(1 − 𝑎)(𝜎2 + 𝑆2𝑠2)
𝑎2𝑠2 + (1 − 𝑎)2𝑆2 + 2𝑎(1 − 𝑎)𝜎 > 𝜎, by 𝜎2 < 𝑆2𝑠2.

Since 𝐴𝐶 > 𝜎, 𝜃𝜏
2 (𝜎 + 𝐴𝐶) > 𝜃𝜏𝜎. If 𝜎 < 0 then 𝜎 = 𝜃𝜏

2 (𝜎 + 𝐴𝐶) > 𝜃𝜏𝜎 > 𝜎, a contradiction. Thus 𝜎 ≥ 0.
Also if 𝜎 = 0 then

𝜎 = 𝜃𝜏
2 ( 𝑎(1 − 𝑎)(𝑆2𝑠2)

𝑎2𝑠2 + (1 − 𝑎)2𝑆2 )

which implies 𝑎 = 0 or 𝑎 = 1. This proves that 𝜎 is non-negative, and positive if 𝑎 ∈ (0, 1), so long as the distribution
converges.

From the invariant distribution, first:

𝜎 (1 − 1
2𝜃𝜏) = 𝜃𝜏

2
(𝑎𝑠2 + (1 − 𝑎) 𝜎) (𝑎𝜎 + (1 − 𝑎) 𝑆2)
𝑎2𝑠2 + (1 − 𝑎)2 𝑆2 + 2𝑎 (1 − 𝑎) 𝜎

or

𝜇 (1 − 1
2𝜃𝜏) = 𝜃𝜏

2
(𝑎𝜆 + (1 − 𝑎) 𝜇) (𝑎𝜇 + (1 − 𝑎))
𝑎2𝜆 + (1 − 𝑎)2 + 2𝑎 (1 − 𝑎) 𝜇

where

𝜆 = 𝑠2/𝑆2 and 𝜇 = 𝜎/𝑆2.

Solving for 𝜆 gives

𝜆 = 1 − 𝑎
𝑎 𝜇(−2𝑎 + 4𝑎𝜇 − 2𝜃𝜏 + 2𝑎𝜃𝜏 − 3𝑎𝜃𝜏𝜇 + 2)

(1 − 𝑎) 𝜃𝜏 − 2𝑎𝜇 (1 − 𝜃𝜏) (13)

Then

𝑠2 (1 − 1
2𝜏2) = 1

2𝐴2𝜏2 + 1

𝑆2 (1 − 1
2𝜃2) = 1

2𝐶2𝜃2 + 1

give

𝑠2 (1 − 1
2𝜏2) − 1

2𝐴2𝜏2 = 𝑆2 (1 − 1
2𝜃2) − 1

2𝐶2𝜃2 therefore

𝜆 (1 − 1
2𝜏2) − 1

2
𝐴2

𝑆2 𝜏2 = (1 − 1
2𝜃2) − 1

2
𝐶2

𝑆2 𝜃2
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Here

𝐴2

𝑆2 = (𝑎𝜆 + (1 − 𝑎) 𝜇)2

𝐷 and

𝐶2

𝑆2 = (𝑎𝜇 + (1 − 𝑎))2

𝐷 ,

𝐷 = 𝑎2𝜆 + (1 − 𝑎)2 + 2𝑎 (1 − 𝑎) 𝜇

which give a quadratic equation in 𝜇:

𝜆 (1 − 1
2𝜏2) 𝐷 − 1

2 (𝑎𝜆 + (1 − 𝑎) 𝜇)2 𝜏2 − (1 − 1
2𝜃2) 𝐷 + 1

2 (𝑎𝜇 + (1 − 𝑎))2 𝜃2 = 0

Plugging in 𝜆 given by (13), this can be rewritten to

𝐹 (𝜇) = (1 − 𝑎 + 𝑎𝜇)2

𝑎
𝑁 (𝜇)
𝐷 (𝜇) = 0

where

𝑁 (𝜇) = 𝑋𝜇2 + 𝑌 𝜇 + 𝑍, with 𝑋, 𝑌 , 𝑍 polynomials in 𝑎, 𝜃, 𝜏

and

𝐷 (𝜇) = (𝜃𝜏 (1 − 𝑎) − 2𝑎𝜇 (1 − 𝜃𝜏))2

One can check that the discriminant is always positive. Therefore this has two solutions (not shown), of which only

one is acceptable (it goes to the exact solution when the coefficient of 𝜇2 goes to 0). Writing

𝜇 = 𝜙1(𝑎, 𝜃, 𝜏)

for this solution:

𝜆 = 𝜓 (𝑎, 𝜃, 𝜏) = 1 − 𝑎
𝑎 𝜙1 (𝑎, 𝜃, 𝜏) (−2𝑎 + 4𝑎𝜙1 (𝑎, 𝜃, 𝜏) − 2𝜃𝜏 + 2𝑎𝜃𝜏 − 3𝑎𝜃𝜏𝜙1 (𝑎, 𝜃, 𝜏) + 2)

(1 − 𝑎) 𝜃𝜏 − 2𝑎𝜙1 (𝑎, 𝜃, 𝜏) (1 − 𝜃𝜏) .

Finally

𝑆2 = 1
1 − 1

2𝜃2 − 1
2

𝐶2
𝑆2 𝜃2 where

𝐶2

𝑆2 = (𝑎𝜙1 (𝑎, 𝜃, 𝜏) + (1 − 𝑎))2

𝑎2𝜓 (𝑎, 𝜃, 𝜏) + (1 − 𝑎)2 + 2𝑎 (1 − 𝑎) 𝜙1 (𝑎, 𝜃, 𝜏)
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and

𝑠2 = 𝜆𝑆2 = 𝜓 (𝑎, 𝜃, 𝜏)
1 − 1

2𝜃2 − 1
2

𝐶2
𝑆2 𝜃2 ;

𝜎 = 𝜇𝑆2 = 𝜙1 (𝑎, 𝜃, 𝜏)
1 − 1

2𝜃2 − 1
2

𝐶2
𝑆2 𝜃2 .

Conditional expectations of children’s genetics given parents’ wealth under SGAM are calculated using the same

formula as before, plugging in moments of the asymptotic distribution:

𝔼 [𝜏
2 (𝑥1 + 𝑦1) + 𝜀 ∣ 𝑥2 = 𝑣, 𝑦2 = 𝑤] = 1

2𝜏 𝜎 + 𝐴𝐶
𝐶2 + 𝑆2 (𝑣 + 𝑤)

Proof of Claim 5. Since men and women have different distributions of attractiveness, we have to match them by

quantiles of their respective distributions. Men’s and women’s attractiveness are distributed

𝑁(0, 𝜎2
𝐼) where 𝜎𝐼 = √𝑎2𝑠2 + (1 − 𝑎)2𝑆2 + 2𝑎(1 − 𝑎)𝜎;

𝑁(0, 𝜎2
𝐽) where 𝜎𝐽 = √𝑏2𝑠2 + (1 − 𝑏)2𝑆2 + 2𝑏(1 − 𝑏)𝜎.

Thus, men with normalized attractiveness 𝑖(𝑥)/𝜎𝐼 match women with normalized attractiveness 𝑗(𝑦)/𝜎𝐽 .

Change variables so that

⎛⎜
⎝

𝑥1

𝑥2

⎞⎟
⎠

→ ⎛⎜
⎝

𝑥1

𝑢
⎞⎟
⎠

where 𝑢 = 𝑎𝑥1 + (1 − 𝑎)𝑥2
𝜎𝐼

;

⎛⎜
⎝

𝑦1

𝑦2

⎞⎟
⎠

→ ⎛⎜
⎝

𝑦1

𝑣
⎞⎟
⎠

where 𝑣 = 𝑏𝑦1 + (1 − 𝑏)𝑦2
𝜎𝐽

.

Thus

⎛⎜
⎝

𝑥1

𝑢
⎞⎟
⎠

= ⎛⎜
⎝

1 0
𝑎/𝜎𝐼 (1 − 𝑎)/𝜎𝐼

⎞⎟
⎠

⎛⎜
⎝

𝑥1

𝑥2

⎞⎟
⎠

;

⎛⎜
⎝

𝑦1

𝑣
⎞⎟
⎠

= ⎛⎜
⎝

1 0
𝑏/𝜎𝐽 (1 − 𝑏)/𝜎𝐽

⎞⎟
⎠

⎛⎜
⎝

𝑦1

𝑦2

⎞⎟
⎠

.
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and their respective covariance matrices are

ℂ ⎛⎜
⎝

𝑥1

𝑢
⎞⎟
⎠

= ⎛⎜
⎝

1 0
𝑎/𝜎𝐼 (1 − 𝑎)/𝜎𝐼

⎞⎟
⎠

⎛⎜
⎝

𝑠2 𝜎
𝜎 𝑆2

⎞⎟
⎠

⎛⎜
⎝

1 𝑎/𝜎𝐼

0 (1 − 𝑎)/𝜎𝐼

⎞⎟
⎠

= ⎛⎜
⎝

𝑠2 𝐴
𝐴 1

⎞⎟
⎠

, where 𝐴 = 𝑎𝑠2 + (1 − 𝑎)𝜎
𝜎𝐼

;

similarly

ℂ ⎛⎜
⎝

𝑦1

𝑣
⎞⎟
⎠

= ⎛⎜
⎝

𝑠2 𝐵
𝐵 1

⎞⎟
⎠

, where 𝐵 = 𝑏𝑠2 + (1 − 𝑏)𝜎
𝜎𝐽

.

Under SGAM, couples have characteristics

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑡
𝑦1

𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,where
⎛⎜⎜⎜⎜⎜
⎝

𝑥1

𝑦1

𝑡

⎞⎟⎟⎟⎟⎟
⎠

is trivariate normal withmean 0 and covariance

matrix

Σ =
⎛⎜⎜⎜⎜⎜
⎝

𝑠2 𝐴𝐵 𝐴
𝐴𝐵 𝑠2 𝐵
𝐴 𝐵 1

⎞⎟⎟⎟⎟⎟
⎠

Lastly, we calculate the covariance matrix of couples’ original characteristics. Since

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
−𝑎

1−𝑎 0 𝜎𝐼
1−𝑎

0 1 0
0 −𝑏

1−𝑏
𝜎𝐽
1−𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

𝑥1

𝑦1

𝑡

⎞⎟⎟⎟⎟⎟
⎠
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we have that the mean is again 0 and the covariance matrix is

ℂ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
−𝑎

1−𝑎 0 𝜎𝐼
1−𝑎

0 1 0
0 −𝑏

1−𝑏
𝜎𝐽
1−𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Σ
⎛⎜⎜⎜⎜⎜
⎝

1 −𝑎
1−𝑎 0 0

0 0 1 −𝑏
1−𝑏

0 𝜎𝐼
1−𝑎 0 𝜎𝐽

1−𝑏

⎞⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 𝐴𝐵 𝐴𝐷
𝜎 𝑆2 𝐵𝐶 𝐶𝐷

𝐴𝐵 𝐵𝐶 𝑠2 𝜎
𝐴𝐷 𝐶𝐷 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where

𝐶 = 𝑎𝜎 + (1 − 𝑎)𝑆2

𝜎𝐼
; 𝐷 = 𝑏𝜎 + (1 − 𝑏)𝑆2

𝜎𝐽
.

From the above and (2) we can calculate the covariance matrix of children’s characteristics as

ℂ ⎛⎜
⎝

𝑥′
1

𝑥′
2

⎞⎟
⎠

= ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠

+ ⎛⎜
⎝

𝜏
2 0 𝜏

2 0
0 𝜃

2 0 𝜃
2

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 𝐴𝐵 𝐴𝐷
𝜎 𝑆2 𝐵𝐶 𝐶𝐷

𝐴𝐵 𝐵𝐶 𝑠2 𝜎
𝐴𝐷 𝐶𝐷 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜏
2 0
0 𝜃

2
𝜏
2 0
0 𝜃

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

𝜏2
2 (𝑠2 + 𝐴𝐵) + 1 𝜏𝜃

4 (2𝜎 + 𝐴𝐷 + 𝐵𝐶)
𝜏𝜃
4 (2𝜎 + 𝐴𝐷 + 𝐵𝐶) 𝜃2

2 (𝑆2 + 𝐶𝐷) + 1
⎞⎟
⎠

.

Thus 𝑥′
1 and 𝑥′

2 will be positively correlated if 2𝜎 + 𝐴𝐷 + 𝐵𝐶 > 0. This is always positive if 𝜎 > 0; if 𝜎 = 0 it

reduces to
(𝑎 + 𝑏 − 2𝑎𝑏)𝑠2𝑆2

𝜎𝐼𝜎𝐽

which is positive unless 𝑎 = 𝑏 = 0 or 𝑎 = 𝑏 = 1. The correlation is

𝜏𝜃
4 (2𝜎 + 𝐴𝐷 + 𝐵𝐶)

√ 𝜏2
2 (𝑠2 + 𝐴𝐵) + 1√ 𝜃2

2 (𝑆2 + 𝐶𝐷) + 1

and taking the derivative shows it is increasing in 𝜃, as in the proof for Claim 4.
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Proof of Proposition 4. Write

𝑥′
1 = 𝜏 𝑥1 + 𝑦1

2 + 𝜀

𝑥′
2 = 𝛾𝑥′

1 + 𝜃𝑥2 + 𝑦2
2 + 𝜂

= 𝛾𝜏 𝑥1 + 𝑦1
2 + 𝜃𝑥2 + 𝑦2

2 + 𝜂 + 𝛾𝜀

Since

⎛⎜
⎝

𝜏 𝑥1+𝑦1
2

𝛾𝜏 𝑥1+𝑦1
2 + 𝜃 𝑥2+𝑦2

2

⎞⎟
⎠

= ⎛⎜
⎝

𝜏
2 0 𝜏

2 0
𝛾𝜏
2

𝜃
2

𝛾𝜏
2

𝜃
2

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

we can use (1) to derive the covariance matrix for children:

ℂ = ⎛⎜
⎝

1 𝛾
𝛾 1 + 𝛾2

⎞⎟
⎠

+ ⎛⎜
⎝

𝜏
2 0 𝜏

2 0
𝛾𝜏
2

𝜃
2

𝛾𝜏
2

𝜃
2

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 𝐴2 𝐴𝐶
𝜎 𝑆2 𝐴𝐶 𝐶2

𝐴2 𝐴𝐶 𝑠2 𝜎
𝐴𝐶 𝐶2 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜏
2

𝛾𝜏
2

0 𝜃
2

𝜏
2

𝛾𝜏
2

0 𝜃
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

𝜏2
2 (𝑠2 + 𝐴2) + 1 𝛾𝜏2

2 (𝑠2 + 𝐴2) + 𝜏𝜃
2 (𝜎 + 𝐴𝐶) + 𝛾

𝛾𝜏2

2 (𝑠2 + 𝐴2) + 𝜏𝜃
2 (𝜎 + 𝐴𝐶) + 𝛾 𝛾2𝜏2

2 (𝑠2 + 𝐴2) + 𝛾𝜏𝜃(𝜎 + 𝐴𝐶) + 𝜃2
2 (𝑆2 + 𝐶2) + 1 + 𝛾2

⎞⎟
⎠

The first claim in the proof follows from the covariance:

𝛾𝜏2

2 (𝑠2 + 𝐴2) + 𝜏𝜃
2 (𝜎 + 𝐴𝐶) + 𝛾

This is increasing in 𝛾, and positive if any of 𝜎 > 0, 𝛾 > 0, or 𝐴𝐶 > 0 (which holds if 0 < 𝑎 < 1 when 𝜎 = 0).

The correlation 𝐶𝑜𝑣(𝑥′
1, 𝑥′

2)/√𝑉 𝑎𝑟(𝑥′
1)𝑉 𝑎𝑟(𝑥′

2) is proportional to

𝛾𝑝 + 𝑞
√𝛾2𝑝 + 𝛾2𝑞 + 𝑟
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where

𝑝 = 𝜏2(𝑠2 + 𝐴2) + 2;

𝑞 = 𝜏𝜃(𝜎 + 𝐴𝐶);

𝑟 = 𝜃2(𝑆2 + 𝐶2) + 2.

The derivative of this with respect to 𝛾 is signed by 𝑝𝑟 − 𝑞2, which equals

[𝜏2(𝑠2 + 𝐴2) + 2][𝜃2(𝑆2 + 𝐶2) + 2] − [𝜏𝜃(𝜎 + 𝐴𝐶)]2

=𝜏2𝜃2(𝑠2𝑆2 + 𝐴2𝑆2 + 𝑠2𝐶2 − 2𝜎𝐴𝐶 − 𝜎2) + 2[𝜃2(𝑆2 + 𝐶2) + 𝜏2(𝑠2 + 𝐴2)] + 4

The last two terms are positive. In the first term, 𝜎2 < 𝑠2𝑆2, and

0 < (𝐴𝑆 − 𝐶𝑠)2

= 𝐴2𝑆2 + 𝐶2𝑠2 − 2𝐴𝐶𝑆𝑠

< 𝐴2𝑆2 + 𝐶2𝑠2 − 2𝜎𝐴𝐶 , again using 𝜎 < 𝑠𝑆.

Hence the whole sum is positive.

Now we can calculate

𝔼[𝑥′
2|𝑥2 + 𝑦2]

using

⎛⎜⎜⎜⎜⎜
⎝

𝛾𝜏 𝑥1+𝑦1
2 + 𝜃 𝑥2+𝑦2

2

𝑥2

𝑦2

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝛾𝜏
2 0 𝜃

21 𝛾𝜏
2 0 𝜃

20
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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to give

ℂ
⎛⎜⎜⎜⎜⎜
⎝

𝑥′
2

𝑥2

𝑦2

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝛾𝜏
2

𝜃
2

𝛾𝜏
2

𝜃
2

0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠2 𝜎 𝐴2 𝐴𝐶
𝜎 𝑆2 𝐴𝐶 𝐶2

𝐴2 𝐴𝐶 𝑠2 𝜎
𝐴𝐶 𝐶2 𝜎 𝑆2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛾𝜏
2 0 0
𝜃
2 1 0

𝛾𝜏
2 0 0
𝜃
2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜
⎝

1 + 𝛾2 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

… 𝛾𝜏
2 (𝜎 + 𝐴𝐶) + 𝜃

2(𝑆2 + 𝐶2) 𝛾𝜏
2 (𝜎 + 𝐴𝐶) + 𝜃

2(𝑆2 + 𝐶2)
𝛾𝜏
2 (𝜎 + 𝐴𝐶) + 𝜃

2(𝑆2 + 𝐶2) 𝑆2 𝐶2

𝛾𝜏
2 (𝜎 + 𝐴𝐶) + 𝜃

2(𝑆2 + 𝐶2) 𝐶2 𝑆2

⎞⎟⎟⎟⎟⎟
⎠

.

Next

𝔼[𝑥′
2|𝑥2, 𝑦2] = ( 𝛾𝜏

2 (𝜎 + 𝐴𝐶) + 𝜃
2(𝑆2 + 𝐶2) 𝛾𝜏

2 (𝜎 + 𝐴𝐶) + 𝜃
2(𝑆2 + 𝐶2) ) ⎛⎜

⎝

𝑆2 𝐶2

𝐶2 𝑆2
⎞⎟
⎠

−1

⎛⎜
⎝

𝑥2

𝑦2

⎞⎟
⎠

= (𝛾𝜏 𝜎 + 𝐴𝐶
𝑆2 + 𝐶2 + 𝜃) 𝑥2 + 𝑦2

2

So long as 0 < 𝑎 < 1 or 𝜎 > 0, the coefficient on parents’ wealth is thus higher than 𝜃.

Proof of Proposition 5. Without loss of generality let 𝐸𝑥1 = 𝐸𝑥2 = 0. The correlation is signed by the covariance.
Write 𝐾 for the set of couples in the parents’ generation with typical member 𝑘 = (𝑥, 𝑦). Without loss of generality

let 𝑥1 ≥ 𝑦1. Then, since the iso-attractiveness curves defined by 𝑓 are downward-sloping, 𝑥2 ≤ 𝑦2. (If 𝑎 = 1 then

𝑥1 = 𝑦1; pick 𝑥 so that 𝑥2 ≤ 𝑦2.) Also, for 𝑎 ∈ (0, 1), if 𝑥1 > 𝑦1 then 𝑥2 < 𝑦2.

Since 𝐸𝑥1 = 𝐸𝑥2 = 0, the covariance among the parents’ generation is

∫
𝐾

(𝑥1𝑥2 + 𝑦1𝑦2)/2 𝑑𝑘

Write

𝑥′
1 =𝜏𝑥∗

1 + 𝜀 where 𝑥∗
1 =(𝑥1 + 𝑦1)/2

𝑥′
2 =𝜃𝑥∗

2 + 𝜂 where 𝑥∗
2 =(𝑥2 + 𝑦2)/2
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and write the children’s covariance as

𝐶𝑜𝑣(𝑥′
1, 𝑥′

2) = 𝐶𝑜𝑣(𝜏𝑥∗
1, 𝜃𝑥∗

2) + 𝐶𝑜𝑣(𝜏𝑥∗
1, 𝜂) + 𝐶𝑜𝑣(𝜀, 𝜃𝑥∗

2) + 𝐶𝑜𝑣(𝜀, 𝜂).

By independence of the shocks, the last 3 terms are zero. So we need to show that

𝐶𝑜𝑣(𝜏𝑥∗
1, 𝜃𝑥∗

2) = 𝜏𝜃𝐶𝑜𝑣(𝑥∗
1, 𝑥∗

2) > 0

Write

𝐶𝑜𝑣(𝑥∗
1, 𝑥∗

2) = ∫
𝐾

𝑥∗
1𝑥∗

2 𝑑𝑘

using that 𝐸𝑥∗
1 = 𝐸𝑥∗

2 = 0.

Take a typical parent, and write

𝑥1𝑥2 = (𝑥∗
1 − Δ1)(𝑥∗

2 − Δ2)

𝑦1𝑦2 = (𝑥∗
1 + Δ1)(𝑥∗

2 + Δ2)

where

Δ1 = (𝑥1 − 𝑦1)/2; Δ2 = (𝑥2 − 𝑦2)/2.

By assumption Δ1 ≥ 0 and Δ2 ≤ 0. Furthermore, if 𝑎 ∈ (0, 1), then for a set of positive measure, Δ1 > 0 and

Δ2 < 0, by our assumption that not all matching couples are identical.

Taking the average of the parents gives

(𝑥1𝑥2 + 𝑦1𝑦2)/2 = 𝑥∗
1𝑥∗

2 + Δ1Δ2

and if 𝑎 ∈ (0, 1), this is strictly less than 𝑥∗
1𝑥∗

2 for a set of positive measure. Plugging this into the integral gives

𝐶𝑜𝑣(𝑥1, 𝑥2) ≤ 𝐶𝑜𝑣(𝑥∗
1, 𝑥∗

2) = ∫
𝐾

𝑥∗
1𝑥∗

2 𝑑𝑘

with strict inequality if 𝑎 ∈ (0, 1). Since the parental covariance was 0 by assumption, this completes the proof.
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Robustness checks

Table 6 reruns our central regressions, dropping the control for parents’ age at birth. Results show the same pattern as

in the main text: the coefficient for birth order is negative, but changes sign when university attendance is added as a

potential mediator. However, the birth order effect is smaller overall, and is never significant. We also ran regressions

using father’s age only; results are similar to those in the main text.

Table 7 reruns our central regressions but includes a separate coefficient for each position in the birth order (with

firstborn as the baseline). The basic pattern of our main result holds: birth order coefficients are generally negative;

adding mediators causes them to increase towards zero or to change sign. Birth order effects appear largest for birth

order 2-3. However, effects for later birth orders are also imprecisely estimated (since fewer respondents come from

large families).

Notably when we add income, dummies for birth order 5 and 6 become large and positive. This could be (for instance)

because being the last born has advantages after effects on SES have been netted out. Table 8 runs the same exercise

for different subsets: male respondents, female respondents, and couples with children. The basic pattern that birth

order coefficients shrink after adding mediators is quite robust. Note however that here, the estimates of effects for

birth order 2-3 are larger for females.

We also ran a specification with separate birth order dummies within each family size. Figure 5 shows 95% confidence

intervals for the birth order coefficients, from the column 2 specification including height and IQ controls but no

mediators. Not surprisingly, coefficients are imprecisely estimated. But most birth order coefficients are negative

compared to the baseline for firstborns.

Table 9 reruns our regressions controlling for several polygenic scores. Results are very close to those in the main text.

Table 10 reruns relevant columns of Table 3 using age of leaving full-time education as a measure of educational SES,

instead of the university attendance dummy. Results are similar to those in the main text: controlling for age of leaving

full-time education shrinks the effect of birth order and makes it insignificant.

Table 11 reruns Table 3 excluding families of size 3. Results are very similar to those in the main text.
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Figure 5: Regressions of spouse PSEA: birth order dummies within different family sizes. Labels show birth order.
Lines are 95 per cent confidence intervals. The omitted category is birth order 1.
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Table 6: Regressions of spouse PSEA, without controls for parents’ age at respondent’s birth

(1) (2) (3) (4)

Birth order −0.0075 0.0027 −0.0024 0.0019

(0.0074) (0.0073) (0.0137) (0.0137)

University 0.2386 *** 0.1965 ***

(0.0149) (0.0250)

Income 0.0034 *** 0.0023 **

(0.0008) (0.0008)

Fluid IQ 0.0156 *** 0.0167 ** 0.0053

(0.0034) (0.0061) (0.0062)

Height 0.0019 ** 0.0036 ** 0.0031 *

(0.0007) (0.0013) (0.0013)

BMI −0.0115 *** −0.0150 *** −0.0139 ***

(0.0015) (0.0027) (0.0027)

Self-reported health 0.0184 + 0.0138 0.0051

(0.0097) (0.0179) (0.0178)

Own PSEA 0.0650 *** 0.0316 *** 0.0393 ** 0.0273 *

(0.0065) (0.0066) (0.0120) (0.0120)

Family size dummies Yes Yes Yes Yes

Birth month dummies Yes Yes Yes Yes

Birth year dummies Yes Yes Yes Yes

N 23797 23797 7658 7658

R2 0.010 0.031 0.021 0.029

logLik −33426.686 −33179.643 −10735.387 −10703.995

AIC 66953.372 66469.287 21578.773 21517.989

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
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Table 7: Regressions of spouse PSEA, separate birth order dummies

(1) (2) (3) (4)
Birth order 2 −0.0500 * −0.0204 −0.0464 −0.0443

(0.0232) (0.0231) (0.0411) (0.0410)
Birth order 3 −0.0557 0.0013 −0.0174 0.0020

(0.0376) (0.0374) (0.0673) (0.0673)
Birth order 4 −0.0736 0.0099 −0.0162 −0.0004

(0.0655) (0.0651) (0.1270) (0.1268)
Birth order 5 −0.0801 0.0022 0.1038 0.1207

(0.1190) (0.1181) (0.2294) (0.2289)
Birth order 6 −0.2746 −0.1997 0.1632 0.2067

(0.2371) (0.2349) (0.5966) (0.5953)
University 0.2182 *** 0.1553 ***

(0.0221) (0.0375)
Income 0.0037 *** 0.0030 **

(0.0010) (0.0010)
Own PSEA 0.0574 *** 0.0263 ** 0.0219 0.0117

(0.0099) (0.0101) (0.0180) (0.0181)
Parents’ age at
birth 0.0116 *** 0.0052 * 0.0092 + 0.0079 +

(0.0026) (0.0026) (0.0047) (0.0047)
Wald p-value,
birth order 0.2452 0.7917 0.8285 0.7867
Family size
dummies Yes Yes Yes Yes
Birth month
dummies Yes Yes Yes Yes
Birth year
dummies Yes Yes Yes Yes
Other mediators
(IQ, height, BMI,
s.-r. health) No Yes Yes Yes
N 10206 10206 3407 3407
R2 0.013 0.032 0.030 0.035
logLik −14296.681 −14196.868 −4810.108 −4801.412
AIC 28703.362 28513.735 9740.215 9724.824
*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
Grey background: coefficients are higher than column 1.
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Table 8: Regressions of spouse PSEA, separate birth order dummies: subsets

Males Males Females Females With children With children
Birth order 2 −0.0260 0.0048 −0.0701 * −0.0452 −0.0520 * −0.0220

(0.0357) (0.0353) (0.0309) (0.0310) (0.0246) (0.0245)
Birth order 3 −0.0231 0.0384 −0.0818 −0.0336 −0.0625 −0.0033

(0.0579) (0.0570) (0.0508) (0.0507) (0.0406) (0.0403)
Birth order 4 −0.1011 −0.0030 −0.0481 0.0197 −0.0805 0.0056

(0.1001) (0.0996) (0.0855) (0.0851) (0.0688) (0.0685)
Birth order 5 −0.2165 −0.1531 0.0243 0.1060 −0.1358 −0.0526

(0.1458) (0.1469) (0.1472) (0.1474) (0.1071) (0.1076)
Birth order 6 −0.6127 * −0.4881 * −0.0480 −0.0175 −0.1888 −0.0954

(0.2582) (0.2266) (0.2250) (0.2328) (0.1892) (0.1843)
University 0.2730 *** 0.1684 *** 0.2169 ***

(0.0332) (0.0307) (0.0239)
Own PSEA 0.0591 *** 0.0219 0.0569 *** 0.0307 * 0.0622 *** 0.0291 **

(0.0148) (0.0150) (0.0135) (0.0137) (0.0106) (0.0107)
Parents’ age at
birth 0.0125 ** 0.0050 0.0107 ** 0.0055 0.0125 *** 0.0061 *

(0.0040) (0.0040) (0.0034) (0.0035) (0.0028) (0.0028)
Wald p-value,
birth order 0.2187 0.2549 0.2844 0.6257 0.3039 0.9304
Family size
dummies Yes Yes Yes Yes Yes Yes
Birth month
dummies Yes Yes Yes Yes Yes Yes
Birth year
dummies Yes Yes Yes Yes Yes Yes
Other mediators
(IQ, height,
BMI, s.-r.
health) No Yes No Yes No Yes
N 4675 4675 5531 5531 9127 9127
R2 0.018 0.044 0.018 0.032 0.015 0.035
logLik −6587.036 −6525.476 −7680.051 −7641.553 −12771.914 −12678.456
AIC 13282.073 13168.953 15466.102 15399.106 25651.828 25474.913

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
Grey background: birth dummy coefficient is higher than corresponding coefficient without mediators.
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Table 9: Regressions of spouse PSEA with controls for polygenic scores

(1) (2) (3) (4)

Birth order −0.0313 −0.0047 −0.0113 −0.0049

(0.0183) (0.0177) (0.0311) (0.0308)

University 0.2178 *** 0.1534 ***

(0.0245) (0.0232)

Income 0.0037 *** 0.0030 ***

(0.0007) (0.0007)

Fluid IQ 0.0168 * 0.0198 0.0110

(0.0066) (0.0116) (0.0120)

Height 0.0029 * 0.0046 * 0.0042 *

(0.0011) (0.0018) (0.0018)

BMI −0.0109 *** −0.0112 ** −0.0107 *

(0.0023) (0.0039) (0.0039)

Self-reported health 0.0173 0.0138 0.0071

(0.0199) (0.0341) (0.0339)

Own PSEA 0.0519 *** 0.0231 + 0.0178 0.0084

(0.0111) (0.0115) (0.0245) (0.0243)

Parents’ age at birth 0.0114 *** 0.0052 + 0.0093 * 0.0080 +

(0.0028) (0.0028) (0.0040) (0.0041)

Family size
dummies Yes Yes Yes Yes

Birth month
dummies Yes Yes Yes Yes

Birth year dummies Yes Yes Yes Yes

Polygenic score
controls Yes Yes Yes Yes

N 10206 10206 3407 3407

R2 0.013 0.032 0.030 0.035

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
Polygenic scores: alzheimer’s, cognitive ability, neuroticism, substance use.
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Table 10: Regressions of spouse PSEA using age of leaving full-time education

(1) (2) (3)

Birth order −0.0314 * 0.0022 0.0036

(0.0146) (0.0147) (0.0270)

Age left full-time
educ. 0.0475 *** 0.0403 ***

(0.0044) (0.0078)

Income 0.0029 *

(0.0011)

Fluid IQ 0.0144 ** 0.0077

(0.0053) (0.0098)

Height 0.0029 ** 0.0042 *

(0.0011) (0.0019)

BMI −0.0105 *** −0.0106 **

(0.0022) (0.0040)

Self-reported health 0.0148 0.0088

(0.0151) (0.0270)

Own PSEA 0.0573 *** 0.0252 * 0.0127

(0.0100) (0.0101) (0.0185)

Parents’ age at birth 0.0116 *** 0.0041 0.0064

(0.0026) (0.0026) (0.0047)

Family size
dummies Yes Yes Yes

Birth month
dummies Yes Yes Yes

Birth year dummies Yes Yes Yes

N 10206 10156 3400

R2 0.013 0.035 0.037

logLik −14297.465 −14116.670 −4788.765

AIC 28694.930 28343.341 9689.529

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
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Table 11: Regressions of spouse PSEA, excluding family size 3

(1) (2) (3) (4)

Birth order −0.0360 * −0.0126 −0.0228 −0.0204

(0.0170) (0.0170) (0.0330) (0.0329)

University 0.2056 *** 0.1622 ***

(0.0271) (0.0463)

Income 0.0018 0.0012

(0.0015) (0.0015)

Fluid IQ 0.0198 ** 0.0114 0.0030

(0.0062) (0.0113) (0.0117)

Height 0.0025 * 0.0044 + 0.0037

(0.0013) (0.0024) (0.0023)

BMI −0.0124 *** −0.0130 ** −0.0126 *

(0.0026) (0.0049) (0.0049)

Self-reported health 0.0121 0.0071 −0.0015

(0.0182) (0.0335) (0.0335)

Own PSEA 0.0524 *** 0.0210 + 0.0126 −0.0001

(0.0121) (0.0122) (0.0230) (0.0232)

Parents’ age at birth 0.0125 *** 0.0065 * 0.0076 0.0064

(0.0032) (0.0032) (0.0056) (0.0056)

Family size dummies Yes Yes Yes Yes

Birth month dummies Yes Yes Yes Yes

Birth year dummies Yes Yes Yes Yes

N 6959 6959 2286 2286

R2 0.016 0.034 0.033 0.039

logLik −9723.678 −9656.955 −3227.692 −3221.305

AIC 19545.356 19421.909 6561.383 6550.611

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.

53



Regressions with “fake pairs”

Our dataset of pairs could still contain pairs who live in the same postcode but are not spouses. These pairs might

still show a relationship between one partner’s phenotype and the other’s genotype. For example, maybe early-born

children grow up to live in richer postcodes, along with people who have higher PSEA scores (Abdellaoui et al. 2019).

This could then bias the results. If the coefficient for “fake pairs” is absolutely larger (smaller) than for real pairs, then

our results will be biased away from zero (towards zero).

To sign the bias, we create a dataset of “known fake pairs”. These are opposite-sexed pairs who live in the same

postcode, but do not share all the characteristics listed for the real pairs. Specifically, from the list of characteristics

used to create our real pairs (same homeownership status, same length of time at address, same number of children,

attended same assessment center, attended on same day, husband reported living with spouse, wife reported living with

spouse) the fake pairs ticked exactly 5 out of 7 boxes.

We again use genetic children to confirm that the fake pairs are “real fakes”. Out of 817 genetic children of the fake

pairs, only 33 were children of both parents. Thus, the vast majority of fake pairs do not appear to be spouses. Table 12

reruns the regressions of Table 2 using the fake pairs. Although the coefficients on birth order are always negative, and

significant when controlling for parent’s age, they are always absolutely smaller than the corresponding coefficient in

the main text. This suggests that any fake pairs remaining in our data will have the effect of biasing our results towards

zero.
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Table 12: Regressions of PSEA on birth order: fake pairs

(1) (2) (3)

Birth order −0.0074 −0.0061 −0.0273 +

(0.0080) (0.0080) (0.0144)

Own PSEA 0.0510 *** 0.0514 ***

(0.0068) (0.0099)

Parents’ age at birth 0.0096 ***

(0.0025)

Family size
dummies Yes Yes Yes

Birth month
dummies No Yes Yes

Birth year dummies No Yes Yes

N 21550 21508 10400

R2 0.001 0.007 0.011

*** p < 0.001; ** p < 0.01; * p < 0.05; + p < 0.1. Standard errors: robust.
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Quotations on natural inequality

…your face and figure have nothing of the slave about them, and proclaim you of noble birth.

– Odyssey, Odysseus to Laertes

Citizens, we shall say to them in our tale, you are brothers, yet God has framed you differently. Some of you have the

power of command, and in the composition of these he has mingled gold, wherefore also they have the greatest honour;

others he has made of silver, to be auxiliaries; others again who are to be husbandmen and craftsmen he has composed

of brass and iron; and the species will generally be preserved in the children. But as all are of the same original stock,

a golden parent will sometimes have a silver son, or a silver parent a golden son.

– Plato Republic

Nature would like to distinguish between the bodies of freemen and slaves, making the one strong for servile labor, the

other upright, and although useless for such services, useful for political life in the arts both of war and peace. But the

opposite often happens – that some have the souls and others have the bodies of freemen.

– Aristotle Politics

Sons have no richer endowment than the quality

A noble and brave father gives in their begetting.

– Euripides Heracleidae

His looks are full of peaceful majesty,

His head by nature fram’d to wear a crown,

His hands to wield a sceptre….

– Shakespeare Henry VI Part 3

A daughter of a green Grocer, walks the Streets in London dayly with a baskett of Cabbage Sprouts, Dandelions and

Spinage on her head. She is observed by the Painters to have a beautiful Face, an elegant figure, a graceful Step and

a debonair. They hire her to Sitt. She complies, and is painted by forty Artists, in a Circle around her. The Scientific

Sir William Hamilton outbids the Painters, Sends her to Schools for a genteel Education and Marries her. This Lady

not only causes the Tryumphs of the Nile of Copenhagen and Trafalgar, but Seperates Naples from France and finally

banishes the King and Queen from Sicilly. Such is the Aristocracy of the natural Talent of Beauty.

– John Adams to Thomas Jefferson, on Emma Hamilton
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