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Abstract

Evaluations of the consumer harm caused by cartels are typically partial

because they do not attempt to quantify the impact of deterrence, or acknowl-

edge that the CA does not root out all anti-competitive cases. This paper

proposes a broader framework for evaluation which encompasses these un-

observed impacts. Calibration of this framework is challenging because one

cannot rely on estimates for cases which have been observed to make deduc-

tions about those that have not - an example of the classic sample selection

problem which is endemic across much of the empirical Industrial Organisation

literature. However, we show how empirical �ndings, already available in the

existing literature, can be plugged into a Monte Carlo experiment to establish

bound estimates on the magnitudes of cartel-induced consumer harm. Lower

bound (i.e. cautious) estimates suggest that (i) the harm detected by the

CA really is only the tip of the iceberg, accounting for only a small fraction

(at most one sixth) of total potential harm; (ii) deterrence is at least twice

as e¤ective as detection as a means for removing harm; and (iii) undetected

harm is at least twice as large as detected harm. Under less cautious, but very

plausible, assumptions, all three e¤ects could be much greater than this.

Keywords: cartels, anti-competitive harm, deterrence, detection, selection bias,
Monte Carlo simulation

JEL Classi�cation codes: K21, L44, H11

2



1 Introduction

With the growth of anti-cartel enforcement throughout the world, increasing e¤orts

are now devoted to estimating its impact on economic welfare. Although there are

some dissonant voices,1 most evaluations are very positive: estimates from various

CAs, although fairly rough and ready, suggest that the bene�ts to consumers from

their activities more than outweigh their cost, usually by an order of magnitude. For

example, the European Commission (EC) estimates that in 2010 consumers bene�ted

from the removal of overcharges by cartels that were detected and prohibited to the

tune of e7.2 billion.

However such studies quantifying the consumer harm caused by cartels are based

only on the cases that the CA busts - we call this the �observed harm�. This raises

the obvious question: what about the harm that goes unobserved, because it is

deterred? After all a major function of any law is to deter antisocial behaviour,

and this is hopefully also true for competition policy. It is often suggested that the

magnitude of deterred harm far exceeds the harm removed by direct intervention,2

but the measurement of this e¤ect poses signi�cant challenges. It also raises a second

question: what about a second type of unobserved case - those which the CA fails to

detect, even though they involve anti-competitive harm? In e¤ect, these represent

a foregone opportunity, or even failure of policy; again, this is never quanti�ed,

although the magnitudes involved also could be substantial.

This suggests that a more encompassing approach would be to ask �rst �how

much potential for anti-competitive harm is there out there in an economy?� and

then to assess the success of policy by asking "how much of that potential harm is

avoided and/or removed by the presence of anti-cartel laws and the activities of com-

petition authorities?" The �rst question is reminiscent of an old literature, provoked

by Harberger (1954) which attempted to quantify the "social costs of monopoly�,

although our approach is very di¤erent. Such an approach is undoubtedly ambitious

and may even seem speculative, but the potential insights are far wider reaching

1For example, Crandall and Winston (2003) stridently reject any positive impact of competition
policy, but Baker (2003) in the same journal issue paints a far more positive picture.

2See for example Werden (2008), Geroski (2004, p.3) and Baker (2003, p.40).
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than merely asking whether policy generates bene�ts which exceed its costs.

The purpose of this paper is to explore what we can establish from the charac-

teristics of observed harm about the contemporaneous magnitude of total potential

harm. It presents a conceptual framework, which marshals what we do know about

this harm from a large database of cartel overcharges. The �ndings of previous ro-

bust empirical results are plugged into this framework, and a Monte Carlo experiment

assists the calibrations to deduce the magnitudes of what we do not know �total,

deterred and undetected harm. The paper provides some lower bound estimates that

deterrence is at least twice as e¤ective as detection as a means for removing harm,

and undetected harm is at least twice as large as detected harm. Under less cautious,

but very plausible, assumptions, total potential anticompetitive harm from cartels

is 13.7 larger than the harm detected, deterred harm is nearly 10 times higher and

undetected harm over 3 times greater than the CA�s detected harm.

1.1 Previous literature

Existing evaluations of the impact of cartels have taken a variety of forms. Quan-

titative methods vary widely, including di¤erence-in-di¤erences, event studies, and

surveys.3 However, all these works are constrained by the same limitation: driven

mostly by data availability, inferences are made on the basis only of the sample of

cases in which the CA has intervened, and fail to take account of unobserved cases,

cases that are deterred or are undetected. Authors typically defend this approach by

claiming reasonably that there is very little information on detection and deterrence.

We will show that there is su¢ cient information to draw valuable insights on the

unobserved parts of cartel harm distribution.

There are important empirical contributions in the wider literatures on cartel

detection. The early work of Bryant and Eckard (1991) suggested that, in a given

year, only 13-17% of cartels are detected, and Combe et al. (2008) con�rm a similar

magnitude for Europe using the same method.4 Ormosi (2014) proposes an alter-

3See Ormosi (2012) and Davies and Ormosi (2012) for summaries of these various literatures.
4Lande and Connor (2012) provides an exhaustive survey, including estimates derived from

surveys.
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native method that draws an analogy with capture-recapture analysis in ecological

science and �nds detection rates to be in the same ballpark. However, these ap-

proaches relate to cartels which are eventually caught, and leave open the question

of how many and what types of cartels are never observed because they are deterred

or never detected.

The deterrent e¤ect of law has been the subject of academic attention since the

late 60s, with Becker (1968) paving the way for decades of law and economics re-

search. More speci�cally on cartels, previous works have focused on di¤erent aspects

of deterrence, such as the optimal amount of criminal sanctions, i.e. sanctions that

help achieve highest deterrence,5 or whether revenue or pro�t should be used as a

basis for calculating the optimal deterrent �ne.6 More recently research turned to ex-

periments, attempting a direct measurement of deterrence in a controlled laboratory

environment.7

Relatively few works have provided empirical (out-of-lab) solutions for determin-

ing the level of cartel deterrence. Focusing speci�cally on the impact of leniency

programmes, Miller (2009) o¤ers a model of cartel formation over time and shows

that the introduction of the 1993 leniency programme strengthened deterrence. In

terms of examining the level of deterrence, competition authorities (CA) have re-

lied on survey studies involving interviews of competition practitioners, lawyers and

companies. In one such study, commissioned by the OFT in the UK, Deloitte (2007)

reports that for each cartel detected by the CA, there were at least another �ve that

were deterred by competition law.8

At �rst sight, these detection and deterrence rate estimates provide a straight-

forward approach for extrapolating the estimates from CAs of how much harm they

rectify from their detected cases to estimate the magnitudes of the unknown deterred

5See for example Elzinga and Breit (1973), Landes (1983), Kobayashi (2001), Ginsburg and
Wright (2010), Werden et al. (2012).

6Katsoulacos and Ulph (2013).
7For a general experimental treatment of deterrence see Schildberg-Hörisch and Strassmair

(2012). For cartels speci�cally see Bigoni et al. (2012).
8Subsequent studies using similar survey methodologies con�rm that such multipliers are likely

to be signi�cant, although the precise magnitudes vary considerably: a larger follow-up UK survey
by London Economics (2011) reports much higher (1:28) deterrence rates.
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or undetected harms. If for every case detected, it is known that another �ve are

deterred, the magnitude of deterred harm might be inferred to be �ve times greater

than the CA�s estimates of the harm caused by the cartels it busts. Equally, with

estimated detection rates of 1 in 6 for cartels, the magnitudes of undetected harm

may be similarly estimated. We refer to this below as the simple multiplier approach,

and argue that it confronts a strong possibility of selection bias - the sample observed

(by the CA) may not be representative of the full population.9

Thus, this paper also confronts a sample selection problem, and is in that sense

of wider relevance than just the narrowly de�ned policy evaluation literature. There

is a signi�cant body of empirical research in Industrial Organisation which employs

datasets of cases investigated and intervened by CAs, and such data have provided

a rich source of information on cartels (typical overcharge, duration, structural char-

acteristics etc.). While many studies in that literature acknowledge the possibility of

sample selection bias, this is rarely quanti�ed, and it is unknown how far this might

compromise many of the conventional wisdoms, for example, on cartel duration and

overcharge.

1.2 Structure

Section 2 de�nes terms and introduces a framework which relates detected harm to

an underlying population of all potential anti-competitive harm. It introduces how

simple multipliers of the type just described could be used to provide estimates of the

magnitudes of potential total population harm, deterred and undetected harms. The

remainder of the paper explores sample selection bias in this setting. Section 3 frames

the task as a simple sampling problem. Section 4 examines the likely properties of

the samples of cartel harm which are observed in CA interventions. Section 5 uses

Monte Carlo experiments based on information from previous empirical works and

9Of course, such an approach can also be criticised for attaching over-reliance to survey results,
based on subjective assessments of sometimes hypothetical questions. Moreover, the ratios reported
in survey estimates also include composition deterrence (when �rms modify their conduct to avoid
prosecution), where the amount of modi�cation is likely to vary signi�cantly across (potential)
cartels.
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discusses the main �ndings and policy implications.

2 Framework

2.1 Notation

Denote the total potential cartel-induced harm in a given economy for a given point

in time (say year) by H. This includes all harm that would happen in the absence

of competition policy.10 Some of this harm does not occur because it is deterred

by the existence of competition law and enforcement. Denote the magnitude of all

deterred harm by W and its ratio to all harm by ! := W
H
. If the conduct is not

fully deterred then some/all of the undeterred harm is discovered by the CA. Denote

the magnitude of all detected harm by S, and its ratio to all undeterred harm by

� := S
H�W .

11

In general, both � and ! may be time variant and interdependent. This is not to

deny the possibility of a dynamic causal relation running from ! to future �: success

in detection by the CA might deter �rms from attempting on contravene the law in

the future. But the purpose of this paper is not to model such a relationship, rather

to expose what we can establish from the characteristics of observed harm at a given

time on the characteristics of the population harm at the same time.

The ratio of detected harm (i.e. undeterred and detected and therefore ob-

served/sampled) to total population harm is given by (1� !)�, and the magnitude
of detected (sampled) harm is:

HS = (1� !)�H (1)

10This counterfactual is over-simpli�cation to the extent that private enforcement might anyway
deter some such cases. It also abstracts from the possibility that other policy, such as import
liberalisation or deregulation, might also deter behaviour. Finally, we acknowledge the possibility
of harmless horizontal agreements but our focus is on harmful cases only. Although the possibility
of a cartel with negative harm is very small, we address this issue in the Appendix.

11We assume that the CA does not make errors: a detected case is always rightly convicted.
Although only a remote possibility in cartel cases, in Appendix B we discuss the possibility of Type
2 errors by the CA.
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In passing, note that Eq.(1) formalises that small detected harm does not nec-

essarily imply a lazy or inept CA, it might also signal one, which is particularly

e¤ective in deterring - something that deserves emphasis in any policy evaluation

exercise. Equally, a CA eliminating huge amounts of cartel harm may be one which

is ine¤ectual in deterring.

2.2 The simple multiplier

Consider the implications for the magnitudes of total potential harm. Given that

the CA is able to estimate the magnitude of harm it removes in the cases it detects

and intervenes, this suggests a simple method for approximately estimating total

population harm, and its unknown constituents: deterred and undetected harms.

Remark 1 If the harm detected and remedied by the CA (HS) is a random sample of

the population, then total population harm is HS=((1�!)�), of which HS!=((1�!)�)
is deterred and HS(1 � �)=� is undetected. Hereafter, these are referred to as the
"simple multiplier" estimates.

The main purpose of this paper is to explore how reasonable is the assumption of

a random sample, how sensitive are estimates of the magnitudes of harm when the

randomness assumption is relaxed, and how to derive estimates that account for this

selection problem. Viewed in this way, the paper addresses a classic potential problem

of selection bias and, as mentioned above, has wider implications for any empirical

research in IO, where conclusions are drawn from databases based on observed cartels

which are intervened by CAs.12

12For example, conventional wisdoms often drawn from the empirical literature are that, typi-
cally, cartels last for about 7 years, involve about 7 members and overcharge in the region of 15-30%.
All of these estimates are based on cartels which have been detected: little is known about those
which are never detected, or those which are deterred.
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3 Selection bias with di¤erential sampling

We now consider a sampling problem in which the purpose is to estimate the mag-

nitude of total harm for the population (H), from which a sample has been taken;

the magnitude of sample harm (HS) and proportionate sample size (i.e. undeterred

harm which is detected), � := (1� !)�, are both known. In these terms, the above
"simple multiplier" approach uses (HS=�) as an estimator of (H).

As we will discuss below, there are good reasons to believe that both ! and �

(and therefore �) are dependent on the level of harm h and that therefore the simple

multiplier will provide biased estimates. We show this using a stylised trichotomy, in

which the population is broken down into three, not necessarily equal, segments, low,

medium and high harm cases (L;M;H), ordered by the size of anticompetitive harm.

The purpose is to formalise selection bias and establish what other information is

necessary in order to derive an unbiased estimate.

Similarly to Eq.(1), the ratio of sampled harm in each of the three segments has

two constituents, non-deterrence and detection:

�i = (1� !i)�i

where i = L;M;H.

Assumption 1 With this classi�cation we assume for simplicity that sampled harm
can vary across the three segments but not within each segment.

The lower tail of least harmful cases accounts for a proportion PL of the popula-

tion, and proportion HL of population harm; the upper tail for PH and HH , and the

middle segment for PM = (1�PH� PL) and HM = (1�HH� HL). This is depicted
in Figure 2 using a traditional Lorenz curve, in which the population is ranked in as-

cending order of size (here, harm) along the horizontal axis, and the curve shows the

proportion of aggregate harm accounted for by those cases: i.e. how the proportion

of the harm accounted for by x proportion of least harmful cases increases with x.13

13The Lorenz curve is non-parametric, but often proves helpful in the analysis of positively skewed
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Figure 1: Lorenz curve with three segments of population

Both axes are therefore normalised to the interval [0; 1], and the 45 degree diagonal

provides the symmetric benchmark where all cases involve identical harm. The curve

must be concave to the diagonal because cases are ranked in ascending order of size,

and lies further below the diagonal the more asymmetric is the size distribution.

Assume that each segment is sampled, but with di¤erent sample proportions �i
(i = L;M;H); thus � =

X
i
�iPi.14

Proposition 1 With random sampling across segments, the simple multiplier (HS=�)

is an unbiased estimator of aggregate population harm H. With di¤erential sampling,

it is typically biased; the direction and magnitude of bias depends on (i) the sampling

distributions. Traditionally, �size�might be personal income in studies of income distribution or
�rm size in studies of industrial concentration; see Lorenz (1905), or Gastwirth (1972).

14Thus continuous relationships between the sampling rate and case harm are approximated
with a simple three-step function. Although analytically crude, this is su¢ ciently �exible for present
purposes - the relative magnitudes of the �i can capture monotonicity or not, and concavity, linearity
or convexity. As explained below, the magnitudes of the �i are sensitive to how broadly de�ned are
the sizes of the di¤erent segments (Pi).
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di¤erential and (ii) the relative sizes of mass in the tails.

Proof. Proportionate sample size and the proportionate share of sample harm are:

� � �LPL + �MPM + �HPH and since PL + PM + PH = 1; (2)

� = �M + (�L � �M)PL + (�H � �M)PH : (3)

Similarly

HS=H = �M + (�L � �M)HL + (�H � �M)HH

From simple manipulation,

H =
HS

�+ (�M � �L)(PL �HL)� (�M � �H)(HH � PH)]
(4)

With random sampling (�L = �M = �H), H = HS=�15, but more generally

HS=� R H as (�M � �L)(PL �HL) R (�M � �H)(HH � PH) (5)

The intuition on the sampling di¤erential is obvious: for a given population

distribution (PL; HL; PH and HH), upward bias is more likely the larger is sampling

of the upper tail (�H) relative to sampling of the lower tail (�L). Intuition on

(PL; HL; PH and HH) is aided by referring to the Lorenz curve, in which (PL�HL) =
AD and (HH � PH) = BC. Thus

HS=� R H as AD=BC R (�M � �H)=(�M � �L) (6)

The magnitudes of AD and BC re�ect the relative sizes of the tails and the extent

of population asymmetry, represented by the distance of the Lorenz curve from the
15In conventional notation, for a sample n with sample mean x, drawn from a population N

with mean �, the magnitudes of sample and population harms are nx and N� respectively. If the
sample is random, E(x) = �, the ratio of the magnitude of sample harm to proportionate sample
size has E(nx)=(n=N) = N�:
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diagonal, but the direction of bias also depends on the precise shape of the Lorenz

curve, and therefore the form of the underlying population distribution. To establish

the form of this distribution for the purposes of this paper we rely on the empirical

distribution of cartel overcharges as explained in Section 5.

4 Sample selection

This section explores the likely relative magnitudes of the sampling proportions �L,

�M and �H . Implications are organised in the form of remarks. For this exercise

we use cartel overcharge16 as a proxy for harm and turn to the extensive cartel

overcharge dataset in Connor (2014) which contains 1504 overcharge observations,

1145 of these occured under regimes when cartels were illegal and 359 when they

were legal. Figure 2 compares cartel overcharge densities between these two groups

of cases.17

In comparing these two types of enforcement regimes we can assume that where

cartels are legal there should be no deterrent e¤ect (at least not caused by enforce-

ment) and we also make the implicit assumption that in this case all cartels are

equally likely to be detected. In contrast, when cartels are illegal, some cartel harm

will be deterred and undeterred harm is not all detected. Therefore comparing the

density of overcharge for these two regimes should tell us whether deterrence and de-

tection are higher/lower for given levels of harm. Using this intuition together with

the overcharge data, we can make some remarks on the characteristics of undeterred

and detected (sampled) harm in the period where cartels are illegal.

Remark 2 If cartels are illegal, harm is most likely to be sampled in the middle

segment: �L < �M > �H .18

16Ideally, we would measure harm in terms of consumer welfare loss, and overcharge is admittedly,
at best, an approximate proxy. However, there is, of course no equivalent metastudy of previous
estimates of cartel harm in terms of lost surplus.

17For presentational reasons densities are only plotted up to the 90th percentile of the sample
(the top 10% of the sample ranges from around 70 to 1800, making it di¢ cult to include in a single
scale plot).

18This is con�rmed by formal tests in a short note by Davies and Ormosi (2014).
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Figure 2: Density plot of overcharge under illegal (deterrence) and legal (no deter-
rence) regimes

This might be either because low and high harm cases are less likely to be de-

tected, and/or because these cases are more likely deterred. To disaggregate into two

e¤ects of detection and deterrence we consider �rst how detection probability varies

with harm.19

Anti-cartel enforcement has two arms: leniency applications and �ex o¢ cio�de-

tection (our short-hand for non-leniency cases provoked by consumer complaints or

the CA�s own monitoring independent of leniency). The existing literature includes

some early papers which consider only ex-o¢ cio, but more recently the focus has

been on the likely impact of leniency programmes. Our detection rate variable can

be thought of as the weighted average of these two forms of detection, with the larger

weight attached to leniency since this dominates in most jurisdictions.

Most of the recent theoretical and experimental literatures on leniency, such as

Chang and Harrington (2012), Jensen and Sørgard (2014), Fonseca and Normann

(2012), and Bigoni et al. (2012), suggest that the probability of leniency applications

increases with harm. This is because in markets where cartels cause large harm there

19One could also examine deterrence but naturally more information is available on detection.
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is also a larger incentive to deviate from collusion, and less stable cartels are more

likely to apply for leniency.

On the other hand, to our knowledge, there is no empirical or experimental

evidence to suggest how, if at all, ex-o¢ cio detection is related to case harm. Block

et al. (1981)�s model assumes that it increases with the cartel markup (harm) because

higher prices are more likely to be spotted by customers or the CA, but more recently,

there is a growing understanding that it is price �uctuations, rather than levels,

that create suspicions in the minds of customers and the CA (Harrington (2005),

Harrington (2004)). Employing these �ndings from previous literature, and recalling

the fact that leniency cases typically outnumber ex o¢ cio ones, we make the following

remarks:

Remark 3 The probability of cartel detection is non-decreasing with case harm:�L �
�M � �H .

Turning to deterrence, to our knowledge there is no comparable literature on

how deterrence varies with harm. However, combining Remarks 2 and 3 allows the

following deductions to be made about deterrence:

Remark 4 If detection increases with harm it must follow that the probability of

cartel deterrence is highest for higher harms !L;M < !H , although we cannot tell

whether !L <, >, or = !M .

Remark 5 If detection is invariant with harm it must follow that !L > !M < !H ,

although we cannot tell whether !L <, >, or = !H .20

5 Estimating deterred and undetected harm

Based on Remarks 3-5, this section applies Eq.(4) to simulate the magnitudes of total

potential, undetected and deterred harms. First, total potential harm is estimated

20In Section 5 we present simulation results also assuming the third possibility: detection rate
decreasing with harm. However, we found no previous literature to back up this scenario.
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using Eq.(4), with � := (1�!)�, but Eq.(4) can also be used to estimate undeterred
harm if we re-de�ne the population so as to include only all undeterred cases. In this

case H in Eq.(4) is interpreted as population of undeterred harm, and the sample

proportions are the proportions of undeterred harm which is detected, � := �: Fi-

nally, given estimates of total and undeterred harms, deterred harm is derived as the

residual, and in turn, undetected harm as the residual undeterred harm which is not

detected. For reference, Appendix A shows the decomposition of total population

harm into detected, undetected and deterred harms.

5.1 Monte Carlo experiments

To run the simulations using Eq.(4) we need to calibrate (1) the asymmetry in the

harm distribution (PL;H and HL;H), (2) the aggregate deterrence and detection rates

(! and �), and (3) how these rates vary with cartel harm (!L; �L; !H ; �H and thus

�L; �H). To do this, when possible, we call on previous empirical evidence but

acknowledging the inevitable uncertainty about how the detection and deterrence

rates vary with harm. The Monte Carlo method allows these parameters to assume

a wide range of values.

5.1.1 The population distribution

Instead of relying on a parametric assumption for the harm distribution we use

Connor�s (2014) overcharge data to de�ne the three segments L, M , and H.21 The

two points of intersection between the legal and illegal regime distribution in Figure 2

provide a natural way to identify the three segments. These occur at overcharge rates

of 6% and 34%. So the lower tail is de�ned as overcharges less than 6%; this accounts

for 15% of the sample but only 1% of aggregate harm. The upper tail, overcharge

about 34%, accounts for 35% of the sample and 78% of the harm. Although this

precise choice of magnitudes for each segment of harm is necessarily arbitrary, it

21In previous versions of this paper we used parametric assumptions of lognormal and Pareto,
however we believe the the empirical distribution from Connor�s dataset gives a better approxima-
tion to the real distribution of cartel harm.
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does give a real, evidence-based meaning to low, medium, and high in terms of the

likelihood of sampling.22

5.1.2 The aggregate detection and deterrence rates

We model both ! and � as random variables. In the case of �, there is a fairly

large existing literature attempting to estimate the cartel detection rate. Lande and

Connor (2012) report the results of 25 previous econometric studies, which yield

estimates within the range 0:1 to 0:33. We therefore specify � here as a random

variable with a uniform distribution bounded by this range: � � U(0:1; 0:33).
For !, the deterrence rate, there is much less to go on from the previous literature.

Therefore, we shall not rule out any possible value between 0 and 1. Nevertheless,

we shall assume relatively smaller probabilities of extreme values (implying virtually

no or complete total deterrence). Thus, we assume a symmetric distribution within

these bounds, as described by a beta distribution ! � Beta(�; �), where � = � = 2.
This implies mode and mean of ! = 0:5, but with non-trivial probabilities of all

other values between 0 and 1. In passing, we note that ! = 0:5 is consistent with the

most widely cited statistic in the existing literature, from the Deloitte survey study

described earlier, based on the opinions of competition lawyers and economists that,

for every cartel that occurs, there are another 5 that do not, because of fears of

prosecution under competition law.23 Note however that, in interpreting our results

below, we shall not place undue emphasis on this particular mean value, instead we

consider all feasible alternatives.

5.1.3 The disaggregated sampling rates

Following Section 4 we distinguish between two cases, based on the alternative as-

sumptions on how detection varies with harm:

22We ran simulations where the size of the tails and the corresponding proportion of harm were
allowed to be random but as long as smaller values were equally likely as higher values the estimates
remained in the same ballpark.

23The proportion of detected harm is (1�!)�, then if deterrence is 5 times greater than detection,
! = 5�(1� !). The Deloitte survey also reports that only 1 in 5 cartels are detected, i.e. � = 0:2.
If so, ! = 0:5.
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Detection rate increases with harm (Remark 4):

a) Rate of detection: To ensure increasing detection rates across the segments, we

take three numbers from the distribution U(0:1; 0:33), rank them in ascending

order, and assign them to �L, �M , and �H in this order, which ensures that

�L � �M � �H .

b) Rate of deterrence: First we draw three numbers from the distributionBeta(2; 2)

and then rank them in ascending order. Because deterrence in this case is

assumed to be highest for high harm cases, we assign the greatest to !H ,

and decide with a fair draw whether !L or !H is smaller. This ensures that

!H > max(!L ; !M) in every draw, whilst allowing for all possible values of

deterrence.

Detection is invariant with harm (Remark 5):

a) Rate of detection: Here, trivially, each draw of aggregate � from � � U(0:1; 0:33)
implies the same value for each segment, � = �L = �M = �H .

b) Rate of deterrence: Following Remark 5, if � is constant across segments then

the lowest and the highest harm cases are more likely deterred. To simulate this

in each case we generate three numbers from a beta distribution, Beta(2; 2),

and rank them in ascending order. We then set !M as the lowest value, and

decide randomly with a fair draw whether !L or !H is larger. This ensures that

!M < min(!L; !H) for every draw, according to Remark 5, whilst allowing for

all possible values of deterrence.

5.2 Results

Table 1 reports summary statistics for the simulations, resulting from 10,000 draws.

The partitions of the table refer to the alternative assumptions about how the detec-

tion rate varies with harm: the �rst is for detection increasing with harm - the most

plausible, following the arguments of Section 4; in the second it is assumed invariant
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with harm, and for completeness, the third assumes detection decreases with harm

(although, as we have already argued, there is no theoretical or empirical support

for this). In the main, we focus on the results assuming increasing detection.

Table 1 reports the mean simulated values of total potential harm, which is then

disaggregated into deterred and undetected harms. Detected harm is normalised as

HS = 1, therefore the harms can be interpreted as multipliers of observed (detected)

harm.

These mean values can be interpreted as point estimates, but because of the

inevitable uncertainties about our calibrated values, especially for !, the table also

reports p5 and p95. In e¤ect, these set a 90% con�dence interval, in the sense that

90% of our experiments generate estimates within this range, and p5 and p95 provide

conservative upper and lower bounds. Table 1 also reports the values of ! and �

associated with these bounds: the lower bound relates to low aggregate deterrence

and detection rates (0:28 and 0:16) and the upper bound to a much higher rates

(0:75 and 0:29 respectively).

Result 1 According to the point (mean) estimate, total potential anticompetitive
harm from cartels is 13.7 larger than the harm detected and observed by the CA.

Within this, deterred harm is 9.5 times higher and undetected harm over 3 times

greater than the CA�s detected harm.

These are clearly very large multipliers, con�rming that detected cartels are only

the tip of an iceberg of potential cartel harm, most of which is unobserved, either

because they are not detected or mainly because they are deterred.

However, as already stressed, these are only point estimates, and more cautiously,

we should acknowledge the inevitable uncertainties about the magnitudes of the key

deterrence and detection rates �as re�ected in the estimated bounds.

Result 2 In terms of the 90 percent bounds, the total harm lies in a range of between
5.9 and 28.9 times greater than the observed harm, deterred harm between 2.2 and

24.1 times greater, and undetected harm between 2.2 and 4.9 greater - in each case,

depending on the strength of deterrence and detection.
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Table 1: Monte Carlo results
variable mean median p5 p95
INCREASING DETECTION RATE
total harm 13.655 11.387 5.855 28.878
deterred harm 9.506 7.276 2.247 24.143
undetected harm 3.149 2.921 2.227 4.875
! 0.504 0.499 0.276 0.748
!L 0.403 0.396 0.112 0.723
!M 0.403 0.395 0.112 0.725
!H 0.692 0.708 0.407 0.924
� 0.227 0.228 0.157 0.292
�L 0.158 0.147 0.104 0.246
�M 0.215 0.216 0.131 0.299
�H 0.273 0.282 0.185 0.326
CONSTANT DETECTION RATE

total harm 12.990 10.917 5.270 27.742
deterred harm 7.783 5.759 1.496 20.641
undetected harm 4.207 3.673 2.141 7.968
! 0.451 0.453 0.229 0.678
!L 0.595 0.605 0.276 0.888
!M 0.307 0.292 0.076 0.581
!H 0.596 0.603 0.280 0.888
� 0.214 0.214 0.112 0.318
�L 0.214 0.214 0.112 0.318
�M 0.214 0.214 0.112 0.318
�H 0.214 0.214 0.112 0.318
DECREASING DETECTION RATE
total harm 11.709 10.348 5.763 21.864
deterred harm 5.495 3.976 0.900 14.949
undetected harm 5.214 5.172 2.967 7.657
! 0.445 0.439 0.200 0.713
!L 0.691 0.707 0.410 0.919
!M 0.401 0.394 0.106 0.724
!H 0.403 0.397 0.108 0.724
� 0.203 0.202 0.138 0.273
�L 0.272 0.282 0.184 0.326
�M 0.215 0.215 0.131 0.298
�H 0.157 0.147 0.104 0.245
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Although these ranges are wide, especially for deterrence, even focussing on the

most cautious lower bounds, three key conclusions remain robust: (i) detected harm

is only a small fraction (at most one sixth) of total potential harm � the tip of

the iceberg; (ii) deterrence is at least twice as e¤ective as detection as a means for

removing harm; (iii) undetected harm is at least twice as large as detected harm.24

Table 2 develops the implications for evaluating the e¢ cacy of policy in terms of

the relative impacts of detection and deterrence. Consider the estimated mean total

harm column: if total harm is 13:7 greater than detected harm, then the latter is

7:3% of total harm. Similarly, a deterrence multiplier of 9:51 implies that 9:51=13:7 =

69:4% of total harm is deterred. This implies the CA �removes�76:7% of all potential

harm, the remainder being undetected. The p5 and p95 columns are constructed

similarly.

Table 2: Assessing the �success�of competition policy
mean p5 p95

Total potential harm 13.7 5.86 28.9
detected 1 1 1

7.30% 17.10% 3.50%
deterred 9.51 2.25 24.1

69.40% 38.40% 83.40%
Success (detected+ deterred) 76.70% 55.50% 86.90%

Now interpret the lower bound as describing a �poorly�performing CA (recall

that at the lower bound, aggregate deterrence and detection rates are relatively low

at 0:28 and 0:16 respectively); and the upper bound as a �good�CA (much higher

rates of 0:75 and 0:29 respectively). The table then provides a quanti�cation of poor,

good and average. Thus the mean CA is successful at �removing�three quarters of all

potential cartel harm, mainly by deterrence, the poor CA removes little more than

half, while the good CA removes nearly 90%.

24Another implication is that the treble damages rules applied in cartel cases are good approx-
imation if the purpose of the rule is to redistribute wealth from undetected harm (one function
of treble damages rules is to account for undetected infringements). They are not adequate as a
deterrent though as detection probabilities are estimated to be under 1/3.
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Table 2 also reveals what at �rst sight appears to be paradoxical. Note that the

poor CA actually detects a greater percentage of potential harm �in spite of having

a lower detection rate. However, there is no paradox �under a poor CA regime, far

less harm is deterred and so many more cases actually occur, and this numbers e¤ect

outweighs the lower rate.25

Result 3 These estimates suggest that CAs �remove�between half and nearly nine-
tenths of all potential harm. A corollary of this is that it can be misleading to judge

the performance of a CA merely from the magnitude of harm it detects. While higher

detected harm can signal a well-performing CA, it might also occur when a CA is

particularly ine¤ectual at deterring harmful cartels - more detected harm might re�ect

less e¤ective deterrence.

It is important to emphasise that because of the simpli�cation of working with

an arti�cial trichotomy of anti-competitive harm (low, medium, high) the estimates

above should only be considered as an approximation of the real magnitudes of harm.

Finally, the above results all rely on the assumption that the detection rate in-

creases with harm. If we now return to Table 1, it appears that the above conclusions

are substantively robust to assuming instead a constant detection rate: (i) for total

harm, both the mean and lower bound estimates fall very slightly (by less than one

point); (ii) for undetected harm, the mean and range between bounds both increase

slightly; and (iii) for deterred harm, both the mean and lower bound decrease, but

in all cases the magnitude of changes is very small.26

5.3 The simple multiplier

Part of our motivation for this paper was to illustrate how one might tackle the

sample selection problem, which is endemic in much of empirical IO. In this case,

the bias might occur if one simply uses aggregate estimates of ! and � and assumes

25Neven and Zengler (2008) also voiced this concern.
26In fact, even employing the assumption of a decreasing detection rate does not substantively

change conclusions �notably, the mean multiplier for total harm remains as high as 11.7 and the
range is little changed.
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random sample selection, to estimate how much deterred and undetected cartel harm

there is, given an estimate of detected harm. We referred to this approach as the

simple multipliers (see Remark 1 above).

We can now assess this concern as follows. For simplicity, assume �xed values

of ! = 0:5 and � = 0:215 - these are the means of the distributions we use in our

simulations, and both can be justi�ed by referring to previous empirical literatures,

as described earlier.27

Using the multipliers as de�ned in Remark 1 above, these generate the following

estimates of harm: Total = 9:3, Deterred = 4:65, and Undetected = 3:65 times the

observed harm.

Result 4 Simple multiplier estimates each lie within the 90 percent bounds generated
by our simulations, and, with that level of con�dence at least, we cannot reject the

null of no bias. Nevertheless, for deterred harm the multiplier estimate is 50 percent

lower than the mean simulation, while undetected harm is 20 percent larger. In

aggregate, total potential harm according to the simple multiplier is one third lower

than the simulated mean.

6 Concluding remarks

The introduction raised two ambitious questions: how much harm can cartels cause

to an economy, and how successful are CAs in rectifying that harm? This paper is

the �rst step towards answering these questions. It proposes a methodology in which

the cartels detected by a CA are interpreted as a sample drawn from an otherwise

unknown population, which also includes deterred cases and cases which the CA

did not detect. This methodology identi�es what information is required in order

to quantify the magnitudes of the unknown deterred and undetected harms: (i) the

nature of the potential population distribution of harm, (ii) the magnitudes of the

aggregate probabilities of deterrence and detection, and (iii) how these probabilities

vary with case harm.
27For �, this is the midpoint of the estimates reported by Lande and Connor (2012), and for !

this is the value implied by the Deloitte survey study.
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We proceed, where possible, by employing results from previous empirical and

theoretical literatures. These provide useful insights on: the nature of the population

distribution; a plausible range of magnitudes for the aggregate detection probability;

and in which segments of the distribution deterrence and detection are more likely.

In the absence of previous empirical works on the likely magnitude of the aggregate

deterrence probability, we leave open the possibility of a wide range of potential mag-

nitudes for this parameter in the Monte Carlo simulation. Recognising this element

of potential ignorance, when interpreting the results of the simulation experiments,

we place considerable emphasis on the bounds to our estimates, as well as the point

estimates.

A number of important results emerge. Even if we focus only on the most cautious

lower bound estimates, we �nd that: (i) the harm detected by the CA really is only

the tip of the iceberg, accounting for only a small fraction (at most one sixth) of

total potential harm; (ii) deterrence is at least twice as e¤ective as detection as a

means for removing harm; (iii) undetected harm is at least twice as large as detected

harm. Less cautiously, according to the point (mean) estimates, all three e¤ects are

much greater.

Some of the implications are self-evident. For policy-makers, deterrence is ar-

guably the most important arm of cartel policy, and harm due to undetected cartels

is likely to be considerable. Some are less obvious but important. In particular,

measuring the success of a CA simply by calculating the amount of harm it removes

by virtue of cartel busts can be misleading. Indeed, we use the results of our simu-

lations to show that a �poor�CA (relatively ine¤ectual in deterring and detecting)

may actually detect more harm than a �good�CA, simply because its inability to

deter leaves far more cartels out there to be detected.

More academically, another motivation for this paper was to use policy evaluation

as an example in which to explore selection bias when much of the population is not

observed. On this, the paper suggests a simple but important proposition. In many

aspects of economic and social life, positively skewed distributions apply - a small

proportion of causes (e.g. 20 per cent) generate a very large proportion of e¤ects

(e.g. 80 per cent), e.g. the largest few websites generate the vast majority of internet
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advertising income, the largest customers generate most revenues for businesses, etc.

This is well understood in general and here we see that the same is true for cartel-

induced harm. If so, even small departures from a random sample can lead to

potentially large selection bias. In this context, this implies that the use of �simple

multipliers�, which ignore within population variance, can be potentially misleading.
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A Decomposition of Population Harm

Detected Harm as proportion of Population Harm:

HDT

H
= �(1� !) + (HH � PH)f�H(1� !H)� �L(1� !L)g

Deterred Harm as proportion of Population Harm:

HDR

H
= ! + (HH � PH)(!H � !L)

Undetected Harm as proportion of Population Harm:

HUDT

H
= (1� �)(1� !) + (HH � PH)f(1� �H)(1� !H)� (1� �L)(1� !L)g

B An extension: CA errors

So far, the methodology abstracts away from the possibility of CA errors, either by

undesirable deterrence or intervention in pro-competitive cases (Type 1), or failure

to intervene in welfare-reducing cases (Type 2). We believe that it is a reasonable

approximation for cartels that pro-competitive cartels do not exist, and that the CA

always prosecutes a cartel of which it is aware.

However, we are open to the possibility of enforcement error where the CA chooses

not to intervene in some cartel cases because it assesses the evidence to be insu¢ -

ciently strong to rebut any potential appeal (Type 2 error). Harrington and Chang

(2012) incorporates the possibility of Type 2 errors in their theoretical treatment of

anti-cartel enforcement.28 These errors can be built-into our framework by introduc-

ing a further conditional probability into Eq.(1). De�ning as the random variable I

the proportion of intervened harm intervene in a harmful case which is undeterred

and detected, then the observed harm:

28Schinkel and Tuinstra (2004) examine the theoretical possibility of this. The main di¤erence is
that their paper focuses on a dynamics of these errors whereas we only propose a snapshot analysis
of what one can deduce from the observed to the unobserved.
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H� = (1� !)�(1� I)H (7)

In this case, I is the probability of Type 2 error. To give an approximate idea of

the possible impact, suppose E(I) = 0:1 and that it is invariant with case harm.

Observed sample harm should now be interpreted as the magnitude of intervened

detected harm, where this is only 90% of �true�detected harm (i.e. detected harm

is 1=0:9 = 1:11), of which the CA fails to recognise 0:11 (i.e. 11% of the intervened

harm), due to Type 2 error. Without this adjustment, non-intervened harm is sub-

sumed within our estimates of deterred harm. While the correction would be larger

if Type 2 errors are more likely for high harm cartels, this is unlikely to substantively

change any of our main conclusions.

C Histograms of the simulation results
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Figure 3: Simulated magnitudes of total potential harm
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