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1. Introduction

Predicated on the assumption that jurors vote non-strategically, the unanimity rule in
juries has traditionally been seen as a safeguard against convicting the innocent. Build-
ing upon the work of Austen-Smith and Banks (1996), Feddersen and Pesendorfer
(1998, FP) challenged this perspective and showed that, under the a priori assumption
that a defendant is equally likely to be innocent or guilty, an equilibrium with the una-
nimity rule can encompass strategic voting. In contrast to informative voting, strategic
voting might not simply reveal private information.

FP proved that the presence of strategic voting leads to higher error rates in con-
victing the innocent and acquitting the guilty compared to juries under simple majority
or supermajority rules, where strategic voting is absent in equilibrium under the same
initial assumptions. Furthermore, they highlighted that the issue of an increased rate
of convicting the innocent under unanimity voting becomes notably exacerbated with
larger jury sizes.

Guarnaschelli et al. (2000, GMP) experimentally confirmed the presence of strate-
gic voting under unanimity voting, but also documented results that to some extent
contradict FP’s claims on error rates. They sought to reconcile this partial discrep-
ancy between theory and data by utilizing the Quantal Response Equilibrium (QRE)
model’s statistical nature (McKelvey and Palfrey, 1995).

We introduce an alternative non-equilibrium framework, using level-k modeling, to
address this discrepancy and offer a fresh perspective on jury voting under the unanim-
ity rule, both theoretically and experimentally. Despite a large literature on strategic
thinking and heterogeneous level-k reasoning that includes work on auctions, social
learning and other related settings (Crawford et al., 2013), to the best of our knowl-
edge the precise cognitive processes of strategic voting and their concrete influence on
jury accuracy have not yet been studied.

We model the jury voting via iterative best responses. We begin with the assumption
that all level-0 players vote uninformatively. A level-1 player best-responds to level-0
players by voting her signal (informative voting); and a level-2 player best-responds
to level-1 players by voting “guilty” irrespective of her signal (strategic voting). The
intuition is that informative voting with imprecise signals will otherwise never lead
to convictions under the unanimity rule. With strategic voting being inherently unin-
formative, level-3 players revert to informative voting in response. This establishes
a cyclical best-response pattern: higher odd-level players respond to strategic voting
with informative voting and higher even-level players counteract informative voting
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with strategic voting.
We attained nuanced insights into individual reasoning beyond mere vote obser-

vation by employing an intra-team communication protocol that provides written ac-
counts of subjects’ decision justifications (Burchardi and Penczynski, 2014; Penczyn-
ski, 2017). These accounts substantiated the existence of the modelled level-k rea-
soning types within our sample and allowed us to differentiate among overlapping
voting behaviors of various level-k types, that arises due to our model’s cyclical best-
response characteristic. Additionally, this approach enhanced the robustness of identi-
fying strategic voters by screening out level-0 players who might otherwise be misiden-
tified as strategic voters if categorizations were exclusively based on observed votes.

In a 2×2 within-subject experimental design, we investigate strategic voting across
two jury sizes (n = 3, 6) and two sampling methods for the information signal (with
and without replacement). While our theoretical model predicts that specific level-k
types do not change their behaviour when jury sizes or signal sampling methods vary,
both variations are predicted to affect the Nash equilibrium (NE) behavior and are
expected to influence the complexity of the strategic task.

Given a specific level-classification, the observed voting behavior closely mirrors
the theorized behavior and remains largely unaffected by treatments. Yet, these treat-
ments influence the aggregate voting behavior by altering the distribution of strategic
sophistication. This influence partly explains the discrepancies between observed jury
accuracy and the optimal accuracy predicted by NE. Crucially, the level distributions
are primarily affected by the strategic complexity introduced by the treatment vari-
ation, so that the aggregate voting behavior not necessarily aligns with the expected
changes under optimal voting.

We find results in line with GMP, who found no significant difference in the fre-
quency of strategic voting between jury sizes of 3 and 6. Both studies rather find a
significant decrease in convicting an innocent, and an increase in acquitting a guilty,
contrary to the NE predictions. We can explain this with the informative votes of less
sophisticated level-1 types, which become more frequent in the more complex setting
with n = 6 jurors. We similarly find that the sampling without replacement seems
less complex and leads to higher strategic sophistication compared to sampling with
replacement.

In light of these results, we propose that a model of heterogeneous types of voters
such as the level-k model is better suited to understand and predict jury performances
across a number of different settings than NE or QRE because it represents the under-
lying cognitive processes of strategic voting.
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Our results relate the setting of jury voting to other settings, in which the plural-
ity of types has been identified as important for a good overall outcome. For exam-
ple, in social learning, the heterogeneity of types improves upon the inefficiencies of
fully rational behaviour – information cascades and herding – thanks to occasional and
private-information-revealing level-1 decisions (Penczynski, 2017). Furthermore, the
fact that the observed level distribution still leads to a good jury performance resem-
bles the coordination “magic” in market-entry games, in which heterogeneous beliefs
seem to provide a useful mechanism of sorting otherwise homogeneous players into
market entrants and non-entrants (Rapoport et al., 1998; Camerer et al., 2004).

Due to the observed influence of the treatment variations on the level-k distribu-
tion, our work also relates to the idea of endogenous depth of reasoning (Agranov et
al., 2012; Alaoui and Penta, 2016). If the strategic sophistication is the result of a
cost-benefit analysis of additional steps of reasoning as modeled by Alaoui and Penta
(2016), our analysis suggests that a larger number of possible signal realizations within
the jury, be it due to a larger jury or to sampling without replacement, increases the
complexity of the game and the cost of deliberation and hence lowers the average ob-
served sophistication.

Our results suggest that conditioning on being pivotal – casting a decisive vote that
determines the jury decision – in voting is much less inhibitive of strategic sophisti-
cation than conditioning on bidding highest in first-price auctions (Eyster and Rabin,
2005; Crawford and Iriberri, 2007; Li, 2017). In auctions, an intra-team communica-
tion analysis suggests that “subjects may actually have problems to form even a basic
belief” as only 15% of subjects deliberate the other players’ decision and thus qualify
for anything other than level-0 (Koch and Penczynski, 2018, p. 79). In contrast, the
level distribution in voting is very similar to commonly found distributions in other
settings.

Incorporating sampling without replacement in our experiment is inspired by Rabin
(2002), who models inference via a sampling process without replacement in order to
reflect the common belief in the law of small numbers (Tversky and Kahneman, 1974).
Similar to our motivation, the increased difficulty of dealing with independent signal
and the simplification of draws that are more “representative” of the urn composition
have led Grimm and Mengel (2020) to use sampling without replacement in their ex-
periment. Our results support the intuition that this sampling is easier to understand.
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2. Theory

2.1. Model Setup

Consider a game with n jurors. Nature determines the state of the world to be red or
blue, S ∈ {R,B}, where each state is equally likely to occur. The realization of S
is not observable by the jury members. After S is determined, each juror receives a
private red or blue signal, s ∈ {r, b}. Signals are informative, as the colors for state
and signal coincide with p ∈ (1

2
, 1), and differ with probability 1− p.

Assume the state of the world is represented by the color of an urn and the jury
members’ signals are balls drawn from the urn. Given p > 1

2
, relatively more blue

(red) balls are in the blue (red) urn.
We distinguish between two types of sampling of the balls: without replacement (O)

and with replacement (W). In O, the private signal observed by the juror is dependent
on the private signals observed by the other n−1 jury members. More specifically, p is
a realization of a hypergeometric random variable. In contrast, in W, the private signal
observed by the player is independent of the private signals observed by the other jury
members, and p is a realization of a Bernoulli random variable.

After each juror receives her private signal, she votes as a part of the jury to correctly
guess the true state of the world with vote v ∈ {R,B}. The votes of the n jurors are
aggregated into a jury decision v̂ ∈ {R,B} according to the unanimity voting rule: the
jury decides for the red urn if and only if all the jury members vote red, and decides
for the blue urn otherwise.

Given this notation, the probabilities of convicting an innocent defendant and ac-
quitting a guilty defendant are respectively represented as Pr(v̂ = R|S = B) and
Pr(v̂ = B|S = R). For the ease of notation, in the rest of the paper, we will refer to
these error rates as Pr(R|B) and Pr(B|R).

Every juror has the same payoff function U(v̂, S) and is assumed to receive π = 0

if the jury correctly guesses the color of the urn; and bears a cost of q ∈ (0, 1) for
wrongly identifying a blue urn as red, and a cost of (1 − q) for wrongly identifying a
red urn as blue. In summary, we have:

U(R,R) = U(B,B) = π = 0

U(R,B) = −q

U(B,R) = −(1− q)

Given these payoffs, the parameter q defines a juror’s boundary for reasonable doubt.
A juror who believes the defendant to be guilty with probability higher than q will
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strictly prefer to convict the defendant. A greater value of q indicates that the juror
is more tolerant of the risk of acquitting a guilty defendant compared to the potential
harm of convicting an innocent.

2.2. Nash Equilibrium

Define σ(s) as the probability to vote red given signal s. FP show the existence of a
mixed strategy equilibrium in which every juror votes red with some positive probabil-
ity, σ(b), when her signal is blue; and always vote red, σ(r) = 1, when her signal is red.
We adapt their relevant findings – for sampling with replacement – to our terminology
and summarize them in the following proposition:

Proposition 1
Given the signals are independent from each other, the unique symmetric mixed strat-

egy equilibrium is defined as

σ(r) = 1, (1)

σ(b) =
Kp− (1− p)

p−K(1− p)
, (2)

where

K =

(
(1− q)(1− p)

qp

) 1
n−1

. (3)

Moreover, the probability of an incorrect jury decision to vote red when the true state

is blue, Pr(R|B), and the probability to vote blue when the true state is red, Pr(B|R),

are defined as

Pr(R|B) = (ρB)
n, (4)

Pr(B|R) = 1− (ρR)
n, (5)

where

ρR = pσ(r) + (1− p)σ(b) and (6)

ρB = (1− p)σ(r) + pσ(b) (7)

are the probabilities that a juror votes red for the respective states of the world, R and

B.
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Proof. See Feddersen and Pesendorfer (1998).1

Proposition 1 defines an equilibrium solution for the case where the private signals
are drawn independently (W). We provide the mixed strategy equilibrium for the hy-
pergeometric case (O) in the following corollary.

Corollary 1.1 Given the signals are drawn from the hypergeometric distribution, the

unique symmetric mixed strategy equilibrium is defined as

σ(r) = 1, (8)

σ(b) =

(
qp

(1− p)(1− q)

) 1
n(1−2p)

. (9)

Moreover, the probability of an incorrect jury decision to vote red when the true state

is blue, Pr(R|B), and the probability to vote blue when the true state is red, Pr(B|R),

are defined as:

Pr(R|B) = (ρB)
n, (10)

Pr(B|R) = 1− (ρR)
n (11)

where

ρR = σ(r)pnσ(b)(1−p)n and (12)

ρB = σ(r)(1−p)nσ(b)pn. (13)

Proof. See Appendix A.1.

2.3. Best responses

Define αs as the juror’s belief about her probability of being pivotal given the signal s
and conditional on state R, and define βs for this belief conditional on state B. In the
following proposition, we identify the conditions for informative and strategic voting
under any beliefs αs and βs.

Proposition 2
For every juror i, define ui(·) as the utility given her vote. Then, we have:

E(ui(σi(r) = 1)) = ((1− q)αrp− qβr(1− p)) + E(ui(σi(r) = 0)) (14)

E(ui(σi(b) = 0)) = (qβbp− (1− q)αb(1− p)) + E(ui(σi(b) = 1)) (15)
1More specifically, see pages 24-26 and Appendix A in FP for the proposition and its proof. For a brief

overview of the explicit functional forms see pages 408-409 in GMP. For a brief discussion of the
strategic voting and pivotality see pages 376-377 and 386-387 in Coughlan (2000) and pages 35-39
in Austen-Smith and Banks (1996).
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Proof. See Appendix A.2.
Using Proposition 2, we identify the conditions under which a juror votes informa-

tively or strategically in the following corollary.

Corollary 2.1
Assume αs + βs > 0 for s ∈ {r, b}, and define w = 1−q

q
then a juror votes her signal

(informative voting) if and only if p > wαb

wαb+βb and p > βr

wαr+βr ; and a juror always

votes red (strategic voting) if and only if wαb

wαb+βb > p > βr

wαr+βr .

Proof. See Appendix A.3.
The assumption αs + βs > 0 assures that a juror is pivotal in at least one state of the

world.
Notice that if we assume that either type of errors are equally costly as in our exper-

imental setup, then we have w = 1; and the boundary conditions for informative and
strategic voting become solely dependent on the pivotality probabilities. In the con-
tinuation of the paper, for the ease of notation and to be in line with our experimental
setup, we will assume that U(R,B) = U(B,R) and hence set q to 1

2
.

Moreover notice that if we further assume that σ(r) ≥ σ(b), then since p > 1
2
,

it is trivial to show αs ≥ βs for s ∈ {r, b}. Given αs ≥ βs for s ∈ {r, b}, the
inequality βr

αr+βr ≤ 1
2
< p is always satisfied, and the inequality βr

αr+βr > p > 1
2

is
never satisfied. As a result, informative and strategic voting conditions respectively
simplifies to αb

αb+βb > p and αb

αb+βb < p.

2.4. Level-k Modeling

Consider a model of heterogeneous types of strategic reasoning, with types k ∈ N0,
who apply k iterated best responses to a level-0 belief (See Nagel, 1995; Stahl and Wil-
son, 1995; Crawford et al., 2013). The types are distributed in the population according
to the level-k distribution d(k), and each level-k juror believes all other jury members
to be level-(k − 1). Furthermore, each juror chooses strategy σk(s) and believes to be
pivotal with probabilities αs

k and βs
k for states R and B respectively.

We assume a level-0 juror to vote uninformatively and hence independently of her
signal, σ0(r) = σ0(b) > 0.2 With σ0(s) > 0 for s ∈ {r, b}, we avoid a trivial setup and
assure the level-1 juror to be pivotal with positive probability.

2We can relax this assumption by introducing some degree of informativeness to level-0 voting, and
maintain the same level-1 predictions (see Appendix A.6 for details). In addition, notice that σ0(r) =
σ0(b) > 0 entails the case for level-0 jurors to vote randomly, i.e. σ0(s) =

1
2 for s ∈ {r, b}.
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Given the uninformative level-0 voting, a level-1 juror’s pivotality is independent
of the state. Hence, a level-1 juror’s expected utility solely depends on her signal’s
informativeness. Consequently, given the received signal has some degree of informa-
tiveness (i.e. p > 1

2
), a level-1 juror votes the same color as her signal.3

A juror’s expected utility for either choice of vote depends both on her received
signal’s strength, p, and her perceived pivotality for a given state, αs or βs. Given the
asymmetric nature of unanimous voting, a level-2 juror believes to be less pivotal if
the true state is B. Hence if her perceived pivotality under state R is relatively high
enough to offset her received blue signal’s strength (αb(1 − p) > pβb), she will vote
red upon a blue signal.4

Because a level-2 juror votes strategically, i.e. always votes red, her action becomes
as uninformative as a level-0 juror. Hence, a level-3 juror best responds in the same
way a level-1 juror does and votes informatively.

Proposition 3
Consider the case where each juror receives an independent private signal. ∀n >

2, jury members at levels {1, 3, ...} vote informatively; and jury members at levels

{2, 4, ...} vote strategically.

Proof. See Appendix A.4.
For the case where the private signals are dependent (O), given n ≥ 2

1−p
,5 a level-2

juror never believes to be pivotal as she believes that there is always a level-1 juror in
the group that receives the blue signal and votes blue. Therefore, for n ≥ 2

1−p
, a level-2

juror is indifferent between voting blue and red.
To eliminate this indifference, we introduce a small error term, ϵ, into the juror’s

belief about other players’ choices. Specifically, we assume that every juror believes
with some small probability ϵ > 0 that every other juror votes the color other than the

3If we relax the assumption that the jury errors are equally costly and assume without loss of generality
that convicting the innocent is more costly for the juror than acquitting the guilty (q > 1

2 ), then
the degree of the received signal’s informativeness needs to be higher than the juror’s threshold of
reasonable doubt, p > q, in order for her to vote informatively.

4If we relax the assumption that the jury errors are equally costly, then strategic voting will also be
dependent on the relative costs of acquitting a guilty and convicting an innocent. For instance, if
the jury members are primarily concerned with not convicting an innocent, then the threshold of
reasonable doubt can be high enough to offset the relatively small probability of being pivotal under
the blue state and a “level-2” juror will not vote strategically. On the other hand, given the juror is
not pivotal in the blue state, βb = 0, (as can be the case under without replacement sampling), then
even if she has a very high threshold of reasonable doubt, she will still prefer to vote strategically.

5Given p = 2
3 , for n ≥ 6.
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color they are expected to vote, i.e. makes a mistake.6 The introduced noise enables us
to parallel the predictions we made in Proposition 3, for O in the following proposition.

Proposition 4
Consider the case where each juror receives a hypergeometrically dependent private

signal. Assume that each juror believes other jury members to make a mistake with

some probability ϵ such that:

ϵ <
1

1 +
(

p
1−p

) 1
(2p−1)n

Then ∀n > 2, jury members at levels {1, 3, ...} vote informatively, and jury members

at levels {2, 4, ...} vote strategically.

Proof. See Appendix A.5.
On the basis of Propositions 3 and 4, Table 1 spells out the level-k predictions for

level-0 to level-3 by sampling method, jury size and signal. Notably, each level-k type
behaves the same across these different aspects. Differences in σ(s) across treatments
can therefore only result from changes in the level-k distribution d(k).

O W
n = 3 n = 6 n = 3 n = 6

d(k) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r)

k = 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
k = 1 0 1 0 1 0 1 0 1
k = 2 1 1 1 1 1 1 1 1
k = 3 0 1 0 1 0 1 0 1

Table 1: Level-k predictions for σk(s).

Given the importance of d(k), asking for an ideal level-k distribution becomes in-
sightful. Specifically, which ideal distribution d∗(k) minimizes the aggregate probabil-
ity of a jury’s errors, Pr(R|B) + Pr(B|R)? We answer this question in an optimiza-
tion problem that features three distinct types, level-0, level-1, and level-2. Higher
levels shall be reflected by level-1 or level-2 because odd-level and even-level behav-
iors coincide. Table 2 indicates d∗(k) by sampling method and jury size. Notably,
the uninformative behavior of level-0 is not useful in minimizing errors and therefore
d∗(0) = 0. Furthermore, the average level µ∗

d is relatively high, especially for n = 6,
and translates in a relatively high ideal share of level-2.

6Alternatively, it can be assumed that every juror believes with some small probability ϵ > 0 that every
other juror votes randomly. This has no effect on the predictions of our model, but changes the upper
bound for ϵ stated in Proposition 4.
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O W
d∗(k) n = 3 n = 6 n = 3 n = 6

k = 0 .00 .00 .00 .00
k = 1 .50 .29 .68 .34
k = 2 .50 .71 .32 .66
µ∗
d 1.50 1.71 1.32 1.66

Table 2: Optimal Level-k distribution d∗(k) by treatment.

Table 3 shows the aggregate predictions σ(s) following d∗(k). For both O and W,
levels of σ(b) increase with jury size. Interestingly, these predictions coincide with the
NE predictions, which also minimize the probability of jury error.7 Intuitively, only
level-2 jurors vote strategically red after a blue signal, which is required with some
probability in order to correctly decide for the true state S under the unanimity rule.
Table 4 gives the minimized probabilities of jury errors.

O W
σ(r) σ(b) σ(r) σ(b)

n = 3 1 .50 1 .32
n = 6 1 .71 1 .66

Table 3: Nash equilibrium and d∗ predictions for σ(s) by treatment.

Another prediction relates to the jury’s accuracy to predict the true state of the world.
The two types of errors are quantified in Table 4. Under Nash and d∗(k) behaviour,
these do not change with the jury size in O.

O W
Pr(R|B) Pr(B|R) Pr(R|B) Pr(B|R)

n = 3 .25 .50 .16 .54
n = 6 .25 .50 .21 .52

Table 4: Probabilities of incorrect jury decisions in Nash equilibrium and under d∗(k).

7Our W treatment predictions slightly differ from the W predictions of GMP who implement p = 7
10

and not p = 2
3 . They have not considered the case without replacement.
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3. Experimental design

In this study, we employ a 2 × 2 within-subject experimental design, varying the size
of the jury, n ∈ {3, 6}, in one dimension and the sampling of the signal, without (O)
or with replacement (W), in the other. This implies four treatments, 3O, 6O, 3W, 6W.
Signals are balls drawn from a red or blue urn, S ∈ {R,B}, each of which is set to
be equally likely to occur. Moreover, we assume the cost of either type of error to be
equal (q = 1

2
) and the probability of drawing a ball of the same color as the urn to be

twice more likely (p = 2
3
).

3.1. Team Communication

To ascertain subjects’ level of thinking, we conduct the experiment with an intra-team
communication protocol that yields incentivized written accounts of their individual
reasoning (Burchardi and Penczynski, 2014).8

The communication protocol incentivizes the subjects’ messages within their re-
spective teams as follows. Subjects are randomly assigned into teams of two players.
The two members are connected through the modified chat module of the experiment
software. Once subjects know the decision problem, each team member can state a
so-called “suggested decision” and justify it in a written message. After the suggested
decision is made, the suggestions and messages get exchanged simultaneously. In a
next step, both team members individually state their “final decision”. For each deci-
sion, one of the two team members’ final decisions is chosen randomly by the com-
puter to count as the “team’s action”. This construction provides incentives to state the
full reasoning underlying the suggested decision in a clear and convincing way. The
message is entered in free form without explicit space or time limitations.

Note that each team takes the role of a single juror and members of the same team
always observe one and the same signal. Juries are therefore composed of n teams
and the jury decision derives from the n final decisions. However, our main analysis
focuses on the suggested decisions and messages of the individual subjects.9

3.2. Experimental procedures

We conducted six experimental sessions in the Experimental Economics Laboratory
at the University of Mannheim (mLab). A total of 96 subjects participated in the

8The experimental instructions are reprinted in section C of the online appendix. The experiments
were programmed and conducted with the software z-Tree (Fischbacher, 2007).

9Arad et al. (2022) show that the team setup does not introduce systematic differences in strategic
decisions compared to a setup with individuals.

12



experiments. Subjects were recruited from the University of Mannheim’s subject pool.
The sessions respectively had 12, 12, 24, 24, 12 and 12 subjects. All of the subjects
were either Bachelor (69), Master (20) or Doctoral (7) students of the University of
Mannheim. Subjects’ mean and median ages were 22. 52% of the subjects were
female. Out of 96 subjects, 27 were studying Economics, 11 of them first year, 6 of
them second year, 6 of them third year and 4 of them forth year or above. 45% of the
subjects had prior training in game theory and 95% of them had previously participated
in laboratory experiments.

Each session began with an initial test phase, during which subjects familiarized
themselves with the team communication procedures. During this test phase, subjects
answered two unrelated questions involving guessing the date of two different histor-
ical events. Subsequently, subjects played the jury voting game in four consecutive
parts, with each part corresponding to a different treatment. Each part consisted of two
periods, with subjects playing the treatment-specific variation of the game in each pe-
riod. For every period, subjects were randomly reassigned to a new team and a jury.10

Prior to each part, subjects were provided with instructions relevant only to that spe-
cific treatment. At the end of each period, subjects were provided with the aggregated
decision of their jury and the resulting payoff for that period. After completing a part,
subjects received a new set of instructions for the subsequent one. The experimenter
read the instructions aloud and addressed any clarification questions publicly.

The sessions were organized such that half of them followed an order in which
subjects first played O (without replacement) treatments for jury sizes of three and
six, respectively, followed by W (with replacement) treatments. The other half of the
sessions featured a reversed order for the sampling treatments while maintaining the
same order for the jury sizes.11

O W
∑

n = 3 192 192 384
n = 6 192 168 360∑

384 360 744

Table 5: Number of observations by treatments.

In sum, 744 observations are collected in 6 sessions. Table 5 indicates 24 fewer

10Upon investigation, we have found no significant difference between the consecutive periods for
each treatment. Consequently, we combined the data from both periods to increase the number of
observations for our analysis.

11Order effects are analyzed and discussed in section 6.1.
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observations for 6W treatment because of an imposed end in one session, in which
several subjects took significantly more time to make their decisions than expected.12

Remuneration for subjects was structured as follows: for each period, subjects
earned e 2 if their jury reached a correct decision, and e 0.20 if the decision was
incorrect. A show-up fee of e 4 was provided, with additional earnings based on the
accuracy of their jury’s decisions averaging at e 8.9, and ranging from a minimum of
e 5 to a maximum of e 12.4. The subjects received their payment after the experiment
in private and in cash.

3.3. Classification Process

The messages are classified independently by two research assistants (RA). For each
individual decision’s message they indicated the level of reasoning that the message
corresponds to most closely. For this task, the RAs are introduced to the level-k model
and received detailed instructions about characteristics of the individual types.13

The following features of the levels of reasoning are derived from the model and
guide the classification process (similar to Burchardi and Penczynski, 2014; Penczyn-
ski, 2017). Level-0 play corresponds to choosing randomly, entirely without justifica-
tion or with some justification completely unrelated to the task. Level-1 jurors always
follow their own signal. They may argue in favor of playing their own signal through
some probability argument. Level-2 reasoning assumes that all other jury members
follow their signal and suggests a way to best respond to that. Level-3 reasoning is
aware that people best respond to a belief that others follow their signal by voting red.
Since level-3’s best response is to follow their signal, level-3 reasoning might have
similarities to level-1 reasoning.

The classification procedure starts with both RAs providing independent sets of clas-
sifications. Then, both are anonymously informed about the classifications of the other
RA and have the possibility to simultaneously revise their own classification. This re-
vision process is repeated twice. These iterations allow them to reconsider diverging
classifications and to screen errors or misperceptions.14

Table 6 indicates that out of 744 observations and hence message opportunities, 529
(71.1%) sent a message, which was classified in all except 4 cases. Out of the classified

12GMP faced a similar issue with their 6W treatment.
13Classification instructions for the RAs are reprinted in section D of the online appendix.
14The initial agreement rate was 77.6%. After the first revision it increased to 87.4%, and after the

second revision, the final agreement rate was 93.2%. See Burchardi and Penczynski (2014), Eich and
Penczynski (2016), and Penczynski (2019) for further evidence on the robustness and replicability
of this kind of classification.
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messages, 493 (93.2%) had a matching level classification by the RAs. Only observa-
tions with classified messages enter our analysis. Table 7 shows that the percentage of
messages classified out of all observations is stable across treatments. Table 8 shows
message examples that are classified for each type of level of thinking.

Message Sent No Message Sent
Classified Unclassified

525 4 215
Matched 493

Table 6: Number of observations by messages and classification.

O W
∑

n = 3 .69 .65 .67
n = 6 .65 .66 .66∑

.67 .66 .66

Table 7: Ratio of observations with classified messages by treatments.

Level Message
L0 I don’t have a clue.
L0 Did not exactly understand this experiment seems to be just de-

pending on luck.
L1 The probability of our urn being the color of the ball is 2/3 while

the probability of the other color is 1/3.
L1 Hm.. the chance of it being the correct color is higher than it

being the wrong one.
L2 I’d take red, because if any other is taking blue, it’ll be blue any-

ways.
L2 I suggest we go for red because our decision won’t be decisive

in the committee’s vote if the others go for blue. We don’t hurt
anyone with this decision.

L3 I think we should stay at blue because the probability of the urn
to be blue is 50/50. So the others may decide to take red as they
assume that one team will choose blue but if every team thinks
in this way we would lose.

L3 Risky to vote blue but others may not vote blue even when draw
blue. I say we vote blue.

Table 8: Examples of Messages

15



3.3.1. GPT Classification

We have further leveraged GPT-4 in assessing the feasibility of classifications through
Large Language Models (LLMs) and conducting robustness checks on the classifica-
tion outcomes of the RAs. The process commenced with prompting GPT-4 using the
classification guidelines prepared for the RAs.15 Subsequently, we fed the messages to
GPT-4 for classification. The classifications by GPT-4 aligned with 94.5% of the RAs’
classifications.

4. Hypotheses

The literature has identified many classes of games, in which subjects apply level-
k reasoning. We therefore expect that such reasoning is also used for jury voting
(Crawford et al., 2013).

Hypothesis 1 Jury member decisions are governed by level-k reasoning.

Hypotheses 2 and 3 express some of the theoretical findings from section 2.4.

Hypothesis 2 Given a level of reasoning, the behaviour will not differ by treatment.

Hence, aggregate σ(b) will not depend on the treatments, but on the level-k distribution

d(k) only.

Hypothesis 3 The jury error rates in terms of Pr(R|B) and Pr(B|R) are a function

of the level-k distribution d(k).

What could influence the level-k distribution? At various points in the literature, the
dependence of the level-k distribution on game and population characteristics has been
discussed and empirically documented (Alaoui and Penta, 2016; Penczynski, 2016b,
2017; Koch and Penczynski, 2018).

Increasing task complexity raises the cognitive cost of strategic thinking, while re-
duced perceived pivotality curtails the motivation for such thought. In our experiment,
we selected the sampling method and jury size as treatment dimensions, as each in-
fluences task complexity by changing signal realizations within the jury, which in turn
affects a juror’s perceived pivotality. A jury size of 3 presents fewer signal realizations
than a jury of 6, irrespective of the sampling method. We hypothesize that such de-
creased complexity leaves more cognitive capacity for strategic deliberation and thus
leads to a higher mean level of reasoning.
15See section B of the online appendix for the used prompt and the details of the GPT-4 classification

procedure.
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Hypothesis 4 The smaller number of possible signal realizations in jury size 3 com-

pared to jury size 6 frees cognitive capacity and leads to the observation of a higher

average level of reasoning µd.

In O, for a given state S, the distribution of red and blue signals within the jury is
predetermined and hence known by the jury members. Rabin (2002) models the belief
in the law of the small numbers by means of “without replacement” sampling, leading
us to expect that O makes deliberation easier for subjects. In W, many more signal
realizations are possible, especially with larger jury sizes n.

Hypothesis 5 The smaller number of possible signal realizations in O compared to

W frees cognitive capacity and leads to the observation of a higher average level of

reasoning µd.

5. Results

Section 3.3 has shown that the RAs agreed about the content of messages in 93.2%
of the cases. Table 9 shows the aggregated level-k distribution according to these
classifications. The distribution d(k) is non-degenerate and features a heterogeneity of
types, a hump-shape with mode behaviour at level-1, and hardly any level-3 behaviour.
All of these are expected and common traits of level-k distributions as observed in
other contexts (Crawford et al., 2013). An average level µd of 1.12 is well within the
range between 1 and 1.5 that the literature commonly observes (Camerer et al., 2004;
Costa-Gomes and Crawford, 2006; Burchardi and Penczynski, 2014).16

d(k)

k = 0 .21
k = 1 .49
k = 2 .29
k = 3 .02
µd 1.12

Table 9: Aggregate level-k distribution d(k).

16In each treatment, the balance between the received signals and the state of the urn is checked. The
proportions of the red signals received were as follows: 0.48 for 3O, 0.54 for 6O, 0.53 for 3W, and
0.51 for 6W. Similarly, the proportions of the red states were found to be: 0.47 for 3O, 0.66 for
6O, 0.53 for 3W, and 0.49 for 6W. In sum, barring the imbalance of red and blue states for 6O, the
treatments are balanced in terms of red and blue signals and states.
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Result 1 According to the message classification, jury member decisions are governed

by level-k reasoning in a similar fashion as other strategic decisions in the literature.

Table 10 shows behaviour σ(s) for both signals by treatment and levels. While levels
are inferred from messages without explicit knowledge of the suggested action, the
behaviour of σ(s) within levels is not statistically different across treatments (Fisher
exact test, pmin > 0.187) except for level-0 behavior for between 6O and 6W (Fisher
exact test, p = 0.081).

Some degree of informativeness in level-0 voting is identified for W treatments
(Fisher exact test, 3W: p = 0.134, 6W: p = 0.041), while level-1 and level-2 vot-
ing closely align with predictions. Level-1 voting is primarily informative and sig-
nificantly differs between signals in all treatments (Fisher exact test, pmax < 0.001).
Level-2 voting is predominantly strategic and not significantly dependent on the signal
(Fisher exact test, pmin > 0.23)

O W
n = 3 n = 6 n = 3 n = 6

d(k) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r)

k = 0 .75 .64 .71 .73 .40 .86 .38 .75
k = 1 .03 .97 .09 .97 .09 .97 .04 .97
k = 2 .92 1.00 .91 1.00 .92 1.00 1.00 1.00
k = 3 .00 – .00 – .00 – – –

Table 10: σ(s) per treatment and level.

Table 11 aggregates these numbers over levels. For σ(r), Table 11a shows that
our results (ÇP) are close to the NE predictions and d∗(k) implication of σ(r) = 1.
Yet, due to level-0 voting, we reject the null hypothesis that they are 0.99 or above
for all treatments (one-sample binomial test: for 3O, 6O, 6W pmax < 0.001; for 6W
p = 0.071). For σ(b), Table 11b shows that the jury size has less influence than NE and
d∗(k) would predict, both in our data and in GMP’s results. Specifically, in aggregate,
σ(b) is found not to be significantly different between jury sizes 3 and 6 for both O or
W (Fisher exact test, O: p = 0.371; W: p = 0.69), and it is found to be significantly
lower than predicted in 6O and 6W (one-sample proportion test , 6O: p = 0.004, 6W:
p < 0.001).

In addition, note that in Table 11b, the aggregate strategic voting proportions, σ(b),
includes strategic votes by level-2 jurors but also non-strategic votes from level-0 ju-
rors as well as mistakes of level-1 jurors. As a consequence, the σ(b) proportions
in Table 11b reflect more than purely strategic voting. When the non-strategic votes
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are accounted for, the true aggregate strategic voting rates for 3O, 6O, 3W, and 6W
decrease to .35, .34, .20, and .22 respectively. Under these adjusted values the σ(b)

proportions for 3O and 3W are also significantly lower than the NE predictions (one-
sample proportion test, 3O: p = 0.011; 3W: p = 0.037).

O W
NE/d∗ ÇP NE/d∗ ÇP GMP

n = 3 1 .92 1 .97 .95
n = 6 1 .93 1 .90 .90

(a) σ(r).

O W
NE/d∗ ÇP NE/d∗ ÇP GMP

n = 3 .50 .46 .32 .32 .36
n = 6 .71 .55 .66 .36 .48

(b) σ(b).

Table 11: Nash equilibrium and d∗(k) predictions and empirical results for behavior.

The logit regression in Table 12 summarizes these findings and shows on the one
hand the different and significant impact of different levels on the voting behavior
compared to level-0 – especially for σ(b) – and on the other hand the minor and in-
significant impact of the treatments.

Result 2 Given a level of reasoning, behavior does not differ across treatments. Ag-

gregate behavior σ(b) depends less on the treatments than predicted by NE and d∗(k).

The observed behavior in terms of σ(s) implies error rates as presented in Table
13.17 For each type of error, the observed error rate deviates in the same direction from
the prediction in all treatments. In Table 13a, the error rate Pr(B|R) is significantly
higher in 6 than in 3 for both O and W and consequently higher than under NE or
d∗ (Wilcoxon ranksum test18, p < 0.001). Conversely, in Table 13b, the error rate

17Due to our intra-team methodology, half of the time, a decision made by a subject is not reflected in
the final team decision. As a result, it is not possible to trivially sum the cases in which the jury’s
aggregated decision is correct using the experimental data of jury decisions. Instead, using the mean
values for σ(r) and σ(b), for each treatment and state, we calculated the expected jury accuracies by
plugging σ(r) and σ(b) into the formulas stated in Proposition 1 and Corollary 1.1 for ρR and ρB for
W and O cases respectively. In GMP, accuracy values are derived directly from the jury decisions.

18Wilcoxon ranksum test is performed on the bootstrapped distributions for the error rates. These
distributions are generated by calculating the error rates from the re-sampled with replacement vote
variable.
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Table 12: Logit regressions with average marginal
effects on σ(s).

M1 M2

σ(b) σ(r) σ(b) σ(r)

Level-1 -.508∗∗∗ .002∗∗∗ -.502∗∗∗ .002∗∗∗

(.072) (.001) (.070) (.001)

Level-2 .503∗∗∗ .090∗∗∗ .518∗∗∗ .093∗∗∗

(.123) (.027) (.118) (.025)

Level-3 -.407∗∗∗ -.407∗∗∗

(.056) (.055)

6O .062 -.000
(.149) (.000)

3W -.049 .000
(.119) (.000)

6W -.096 .000
(.101) (.000)

Notes: Values in parenthesis represent the stan-
dard errors clustered by subjects. ‘***’ represents
p < 0.001 significance. There are no level-3 ob-
servations for σ(r) cases. M2 only considers the
level variable while M1 additionally includes treat-
ment variable. We compared the fit of two logis-
tic regression models using a likelihood-ratio test,
we fail to reject M2 over M1 for each subsample
(pmin > 0.52). Hence, we did not find evidence
that including the treatment factors in the model
significantly improved the fit to the data.

Pr(R|B) is significantly lower (Wilcoxon ranksum test, p < 0.001). Both movements
can be explained with the lower than optimal sophistication in the observed d(k) and
the resulting infrequent strategic voting with σ(b) = 1. With the increased blue votes,
the probability Pr(B|R) – acquitting a guilty – increases and Pr(R|B) – convicting
an innocent – decreases.

Result 3 In line with the observed level-k distribution, the jury accuracy deviates from

the optimal accuracy in that convictions are less likely, independent of the state S.

Table 14 shows the level distribution d(k) by treatment. At first sight, the distribu-
tions and the mean levels µd are supportive of Hypotheses 5 and 4 that both treatment
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O W
NE/d∗ ÇP NE/d∗ ÇP GMP

n = 3 .50 .61 .54 .57 .53
n = 6 .50 .78 .52 .86 .73

(a) Pr(B|R).
O W

NE/d∗ ÇP NE/d∗ ÇP GMP
n = 3 .25 .19 .16 .16 .19
n = 6 .25 .08 .21 .02 .03

(b) Pr(R|B).

Table 13: Nash equilibrium and d∗(k) predictions, and empirical results for the error
rates.

dimensions have an influence on the sophistication of strategic thinking.

O W
d(k) n = 3 n = 6 n = 3 n = 6

k = 0 .15 .24 .14 .32
k = 1 .45 .40 .58 .51
k = 2 .37 .35 .26 .16
k = 3 .03 .01 .02 .00
µd 1.28 1.13 1.14 0.84

Table 14: Level-k distribution d(k) by treatment.

Pooling the level-k distribution across two jury sizes, Table 15a shows that the av-
erage level of reasoning is significantly higher under n = 3 compared to n = 6

(Wilcoxon ranksum test, p < 0.001).19 Specifically, level-0 is higher while level-1,
level-2, and level-3 are lower in n = 6 compared to n = 3.20

Result 4 The treatments with jury size n = 3, which produce a smaller number of

possible signal realizations in a jury, feature higher average levels of reasoning.

Pooling the level-k distributions across different sampling methods, Table 15b shows
that average level of reasoning is significantly higher under O compared to W (Wilcoxon

19Since the number of level-3 jurors are relatively low, we have additionally considered the same test
on the subset that excludes the level-3 data, and still found a significant difference (p = 0.003)

20The observed differences for level-0 and level-3 are found to be significantly different (Fisher exact
test, level-0: p < 0.001 ; level-3: p = 0.02), for level-1, it is found to be marginally different (Fisher
exact test, p = 0.149), and for level-2, it is found not to be significantly different (Fisher exact test,
p = 0.315)

21



d(k) n = 3 n = 6
k = 0 .14 .28
k = 1 .52 .45
k = 2 .32 .27
k = 3 .03 .00
µd 1.23 1.00

(a) Jury size n = 3 and n = 6.

d(k) O W
k = 0 .19 .23
k = 1 .43 .55
k = 2 .36 .22
k = 3 .02 .01
µd 1.22 1.01

(b) Sampling O and W.

Table 15: Level distributions d(k) by sampling and jury size.

ranksum test, p < 0.001).21 Specifically, the level-1 fraction is higher and the level-2
fraction is lower in W compared to O.22

Result 5 The sampling method O, which produces a smaller number of possible signal

realizations in a jury, features higher average levels of reasoning.

We have additionally compared the level distribution controlling for the signal. Al-
though the average level of sophistication is observed to be higher for the blue sig-
nal, the difference between the two average levels of reasoning is found to only be
marginally significant (Wilcoxon ranksum test, p = 0.122). As can be seen in Table
16, except for the level-3 ratios, the level of sophistication between the two distribu-
tions are quite close to each other 23. Furthermore, when we exclude the few level-3
players from the data, the average strategic sophistication level for the blue signal
subset becomes 1.11, and the marginal significance between the two subsets is lost
(Wilcoxon ranksum test, p = 0.318). Upon receiving a red signal since there is no
distinction in terms of voting behavior among levels, subjects potentially did not have
the motivation to consider a higher level of reasoning. This might, in turn, have led to
the lack of level-3 thinkers for the red signal cases, producing the observed marginal
significant difference in the level of strategic sophistication between the two signals.

21Since the number of level-3 jurors are relatively low, we have additionally considered the same test
on the subset that excludes the level-3 data, and still found a significant difference (p = 0.002).

22For level-1 and level-2, the observed differences are found to be significantly different (Fisher exact
test, level-1: p = 0.009 ; level-2: p < 0.001) while for level-0 and level-3, they are found not to be
significantly different (Fisher exact test, level-0: p = 0.32 ; level-3: p = 0.29).

23The observed differences for level-0, level-1 and level-2 are found not to be significantly different
(Fisher exact test, pmax > 0.24), while for level-3, it is found to be significantly different (Fisher
exact test, p = 0.003).
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d(k) s = b s = r
k = 0 .20 .21
k = 1 .46 .51
k = 2 .31 .28
k = 3 .03 –
µd 1.17 1.08

Table 16: Distribution of Levels controlling for signal

6. Further explorations

6.1. Order effects

Considering our experiment involved four consecutive treatments, and the fact that the
order of W and O treatments alternated between sessions, we explored potential fatigue
and learning effects. These effects could be in action and might potentially confound
our previously presented results.

6.1.1. Fatigue effect

As subjects advance through the treatments (rounds), cognitive exhaustion might set in,
leading them to exhibit reduced strategic sophistication in later parts of the experiment.
Therefore, if there is a noticeable fatigue effect, regardless of the specific treatments
involved, one would anticipate a diminished average sophistication level in the later
rounds of the experiment.

d(k) H1 H2

k = 0 .25 .17
k = 1 .44 .52
k = 2 .3 .29
k = 3 .01 .02
µd 1.07 1.17

Table 17: Fatigue Effect

In Table 17, we categorized the data into two subsets based on treatments: those
played during the first two rounds, labeled as H1, and those from the last two rounds,
labeled as H2. We then analyzed the strategic level distribution across these subsets.
Contrary to the expectation of a drop in sophistication due to potential fatigue, the re-
sults indicate a higher sophistication level in H2 (Wilcoxon ranksum test, p = 0.094).
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As a result, we deduce that fatigue did not have a predominant influence on the sub-
jects, underscoring the robustness of our previously presented findings.

6.1.2. Learning effect

The learning effect, in contrast to the fatigue effect, might not manifest uniformly
across treatments. Specifically, while the fatigue effect might consistently impact all
the later rounds, the influence of the learning effect could differ based on the altering
ordering of treatments.

When subjects first play O and then transition to W (O2W), an easy-to-hard learn-
ing effect might occur. The relatively lower complexity of the strategy space in O
may enable subjects to better grasp the strategic nature of the game. This enhanced
initial understanding of the game’s strategic aspects could then foster greater strategic
sophistication when subjects tackle more complex W that follow.

Conversely, when subjects start with W followed by O (W2O), a potential hard-
to-easy learning effect might emerge. Initially engaging with W exposes subjects to
a broader signal and strategy space, demanding heightened cognitive effort. As they
transition to O, characterized by a strategy space with fewer possible outcomes, their
prior experience in the complex dynamics of W could enhance their grasp of the game,
leading to increased strategic sophistication compared to scenarios where O precede
W.

Empirical evidence from domains such as motor skills (Wulf and Shea, 2002) and
auditory skills (Liu et al., 2008; Church et al., 2013; Wisniewski et al., 2017) suggests
that an easy-to-hard progression can enhance learning and performance compared to
random or hard-to-easy orderings. In the domain of test-taking, some studies find no
overall effect of question ordering on performance (Plake et al., 1982; Klimko, 1984),
while others demonstrate a positive impact with easy-to-hard progression (Bassey et
al., 2022; Hambleton and Traub, 1974). In contrast, hard-to-easy progression either
shows no significant benefit (Hauck et al., 2017) or a negative effect on performance
(Hambleton and Traub, 1974; Newman et al., 1988).

In Table 18, we do observe that jurors portray a significantly higher level of strategic
sophistication in O2W relative to W2O (Wilcoxon ranksum test, p = 0.016). Given
that O2W represents the learning effect via the easy-to-hard ordering while W2O rep-
resents the learning effect via the hard-to-easy ordering, this initial investigation hints
at the possibility that only an easy-to-hard learning effect is present in our data.

Comparing the average level of strategic thinking between Tables 19a and 19b, we
observe an easy-to-hard learning effect in W: the average level in O2W (1.13) is signif-
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d(k) O2W W2O
k = 0 .16 .24
k = 1 .49 .48
k = 2 .34 .26
k = 3 .01 .02
µd 1.19 1.06

Table 18: Learning Effect

icantly higher than in W2O (0.89) (Wilcoxon ranksum test, p = 0.003). For O, how-
ever, the strategic thinking level in O2W (1.26) is higher than in W2O (1.19) (Wilcoxon
ranksum test, p = 0.1752), which makes a hard-to-easy learning effect unplausible.

d(k) O W
k = 0 .19 .14
k = 1 .37 .59
k = 2 .43 .26
k = 3 .01 .01
µd 1.26 1.13

(a) O to W order, Ord1

d(k) O W
k = 0 .19 .31
k = 1 .47 .5
k = 2 .31 .18
k = 3 .03 .01
µd 1.19 0.89

(b) W to O order, Ord2

Table 19: Level distributions d(k) by sampling and order.

Given the statistically significant influence of the easy-to-hard learning effect on W,
we further examined whether our previously discussed results regarding the overall
effect of sampling and group size remain robust when controlling for order. As illus-
trated in Table 19, the average sophistication level in O is consistently higher across
both the O2W and W2O subsets. This disparity is statistically significant for both
subsets (Wilcoxon ranksum test, O2W: p = 0.053; W2O: p < 0.001).

Similarly, Table 20 reveals that for both subsets, the average sophistication level
is higher in the treatments with a smaller group size, and these differences are also
significant (Wilcoxon ranksum test, O2W: p = 0.102; W2O: p = 0.002). Thus, our
main results remain consistent after accounting for the ordering effect.

Given the documented presence of the easy-to-hard learning effect in our data, a
natural inquiry arises: could this effect also influence performance across jury sizes of
3 and 6? It is worth noting that in our experimental sessions, we alternated only the
order of sampling, while always maintaining the sequence of n = 6 treatments follow-
ing n = 3 treatments. This consistent order means we lack the variation to explore this
effect empirically. However, if the easy-to-hard learning effect is inflating the strategic
sophistication in jury size 6 treatments, this implies an even more pronounced innate
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d(k) n = 3 n = 6
k = 0 .12 .21
k = 1 .51 .46
k = 2 .35 .33
k = 3 .02 –
µd 1.26 1.13

(a) O to W order

d(k) n = 3 n = 6
k = 0 .16 .34
k = 1 .52 .44
k = 2 .29 .22
k = 3 .04 .01
µd 1.20 0.89

(b) W to O order

Table 20: Level distributions d(k) by group size and order.

difference between the two jury sizes than reported. Hence, the possibility of such a
learning effect would only further emphasize our findings on the differences in strate-
gic thinking across the two jury sizes.

6.2. Influence of team communication on votes

In light of our intra-team communication experimental design, we sought to under-
stand how communication impacts juror members’ decisions after their interactions
(see Penczynski, 2016a; Arad et al., 2022) with their teammates (partners). This in-
quiry is explored in Table 21.

Of the 493 messages, RAs were able to classify the strategic thinking levels of both
the juror and her partner for 336 instances (68.2%). Of these, only 85 cases (25.3%)
had differing pre-communication votes between the partners.

For partners that start with the same suggested vote, Table 21a shows that their
subsequent decisions remain largely unchanged and unaffected by the level of strate-
gic thinking conveyed with their communication. In contrast, for diverging suggested
votes, Table 21b shows that the communicated message’s strategic depth has a dis-
cernible influence. Specifically, jurors tend to change their vote in more instances
when a higher level of reasoning is exhibited by their partner.

Vote Changed?
Higher Lv. × ✓

Player 76 0
Neither 100 1
Partner 74 0

(a) Same Initial Vote.

Vote Changed?
Higher Lv. × ✓

Player 23 9
Neither 13 6
Partner 16 18

(b) Different Initial Vote.

Table 21: Comparison of Vote Changes.
Note: Vote Change indicates whether the Player’s final vote is different from their suggested vote.
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7. Concluding remarks

Our study provides evidence that strategic thinking is relevant in jury voting and ap-
propriately modeled by the level-k model of reasoning. The predicted types and their
behaviour align with the evaluation of written accounts and decisions observed in the
experimental games. The model correctly predicts that – given a level of sophistication
– behaviour is unresponsive to changes in jury size and signal sampling method. The
experimental text and decision data support this prediction and show that behaviour
reacts to treatments primarily because strategic sophistication responds to the cogni-
tive complexity of the task at hand. Specifically, we find evidence that larger juries
and the more involved “with replacement” sampling of signals lead to a lower strategic
sophistication.

The deviations of the observed jury error rates from the minimal error rates in equi-
librium can be viewed as a result of the sub-optimal distribution of the levels of rea-
soning in the subject sample. Interestingly, these error rates would be much higher,
and jury votes under unanimity in large juries would basically be uninformative if only
one type of level-k reasoning with informative or strategic voting was present. From
that perspective, the heterogeneity in types being so close to the optimal distribution is
what leads to the observed low error rate in the jury voting. So while many arguments
in favor of jury diversity already exist, the study adds and exhibits in detail a stark
reason for jury diversity in terms of strategic sophistication.
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A. Proofs

A.1. Proof of Corollary 1.1

Following Feddersen and Pesendorfer (1998), we are looking for a responsive sym-
metric equilibrium in mixed strategy profiles. First note that a necessary condition for
a mixed strategy profile is for a juror who receives a blue signal to be indifferent be-
tween voting red and voting blue. This occurs when the probability that the urn is red
(conditional on the juror i’s vote being pivotal and on her private signal to be blue) is
equal to the threshold of reasonable doubt, q. Let Pr(S|s, pivi) represent the proba-
bility of state S, conditional on the signal s and on juror i being pivotal. Then a juror
who receives a blue signal is indifferent between voting red and blue when

Pr(R|b, pivi) = q. (16)

Using Bayes formula we expand on equation (16) as:

Pr(pivi|R, b)Pr(b|R)Pr(R)

Pr(pivi|R, b)Pr(b|R)Pr(R) + Pr(pivi|B, b)Pr(b|B)Pr(B)
(17)

where due to the without placement assumption we have:

Pr(pivi|R, b) = σ(r)pnσ(b)(1−p)n−1 (18)

Pr(pivi|B, b) = σ(r)(1−p)nσ(b)pn−1 (19)

In words, equation (18) describes the probability of being pivotal given n many balls
and jurors where pn many balls are red and received by pn many other jurors, and
(1− p)n− 1 balls are blue and received by (1− p)n− 1 many other jurors. Similarly,
equation (19) describes the probability of being pivotal given n many balls and jurors
where (1 − p)n many balls are red and received by (1 − p)n many other jurors, and
pn− 1 many balls are blue and received by pn− 1 many other jurors. Note that in FP
Pr(pivi|R, b) and Pr(pivi|B, b) are additively defined as (σ(r)p+ σ(b)(1− p))(n−1)

and (σ(r)(1− p) + σ(b)p)(n−1) respectively, while in the without replacement case,
we have a simpler form as in equations (18) and (19). Using (18) and (19) in (17), we
get:

Pr(R|b, pivi) =
(1− p)σ(b)(1−p)n−1

(1− p)σ(b)(1−p)n−1 + pσ(b)pn−1
= q (20)

Isolating σ(b) in equation (20), we get:

σ(b) =

(
qp

(1− p)(1− q)

) 1
n(1−2p)

(21)

31



Given σ(b) > 0, we have Pr(R|b, pivi) = q. Clearly, Pr(R|r, pivi) > Pr(R|b, pivi) =
q. Thus, we have σ(r) = 1.

The probabilities for the jury’s decision to be wrong given the true state of the world
are defined as Pr(B|R) and Pr(R|B). In FP, for the with replacement case, they
are defined as (σ(r)p+ σ(b)(1− p))n and (σ(r)(1− p) + σ(b)p)n respectively. In the
without replacement case, due to the hypergeometric nature of the signals, they are
defined as Pr(B|R) = σ(r)pnσ(b)(1−p)n and Pr(R|B) = σ(r)(1−p)nσ(b)pn in a similar
fashion defined in equations 18 and 19.

Lastly, note that given (20), it can easily be shown that limn→∞ σ(b) = 1.

A.2. Proof of Proposition 2

For every juror i, her expected payoff for voting red given she receives a red signal is
defined as follows:

E(ui(σi(r) = 1) = U(R,R)Pr(R|r)αr + U(R,B)Pr(B|r)βr

+ U(B,B)Pr(B|r)(1− βr) + U(B,R)Pr(R|r)(1− αr)

= p(παr − (1− q)(1− αr))

+ (1− p)(π(1− βr)− qβr) (22)

= −p(1− q)(1− αr)− (1− p)qβr (23)

= −(1− q)p+ p(1− q)αr − (1− p)qβr (24)

Note that the step from equality (22) to (23) has been taken via the assumption π = 0

and the same step has also been taken in the rest of the derivations of this subsection.
Through similar steps, one can define the juror i’s expected payoff for voting blue

given she receives a red signal as:

E(ui(σi(r) = 0) = U(B,B)Pr(B|r) + U(B,R)Pr(R|r) (25)

= π(1− p)− (1− q)p

= −(1− q)p (26)

Notice that in equation (25) we do have a relatively simplified right hand side equation
without the payoffs U(R,R) and U(R,B), and the pivotality probabilities. This is
because since the juror votes blue, U(R,R) and U(R,B) cases never occurs and the
belief on what the other jurors will do becomes irrelevant. Using equalities (24) and
(26), we get the desired equality in (14) of the Proposition 2.

Next, for every juror i, we calculate her expected payoff for voting red given she
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receives a blue signal as:

E(ui(σi(b) = 1) = = U(R,R)Pr(R|b)αb + U(R,B)Pr(B|b)βb

+ U(B,B)Pr(B|b)(1− βb) + U(B,R)Pr(R|b)(1− αb)

= π(1− p)αb − qpβb + πp(1− βb)− (1− q)(1− p)(1− αb)

= −qpβb − (1− q)(1− p)(1− αb)

= −qpβb + αb(1− q)(1− p)− (1− q)(1− p) (27)

Through similar steps, one can define her expected payoff for voting blue given she
receives a blue signal as:

E(ui(σi(b) = 0) = U(B,B)Pr(B|b) + U(B,R)Pr(R|b)
= πp− (1− q)(1− p)

= −(1− q)(1− p) (28)

Using equalities (27) and (28), we get the desired equality in (15) of the Proposition 2.

A.3. Proof of Corollary 2.1

Using Proposition 2, under the additional simplifying assumption that U(R,B) =

U(B,R), we identify the strict inequality conditions for voting either red or blue (con-
ditional on the signal) as in the Tables (22) and (23).

Note that for the inequalities in Tables (22) and (23) to be well defined, we assume,
respectively, the conditions αs + βs > 0 and αs, βs > 0 to hold for s ∈ {r, b}. Either
condition aims at avoiding the cases where a jury member is not pivotality in either
state of the world. Table (22) offers a more general format for the conditions, and as
a result, is presented in the main section of the paper. Table (23) provides a better
starting point for various algebraic manipulations that takes places in the subsequent
proofs that utilizes these boundary conditions.

V ote = r V ote = b

Signal = b
αb

αb + βb
> p

αb

αb + βb
< p

Signal = r
βr

αr + βr
< p

βr

αr + βr
> p

Table 22: Conditions for Informative and Strategic Voting
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V ote = r V ote = b

Signal = b
αb

βb
>

p

1− p

αb

βb
<

p

1− p

Signal = r
αr

βr
>

1− p

p

αr

βr
<

1− p

p

Table 23: Conditions for Informative and Strategic Voting

In the with replacement case, since the signals are independent of each other, we
have αi = αj and βi = βj for i ̸= j and i, j ∈ {r, b}. Hence, for ease of notation,
we can drop the signal superscripts. Then, given p and n, we define the beliefs about
pivotalities for each state as:

α = (pσ(r) + (1− p)σ(b))n−1 (29)

β = ((1− p)σ(r) + pσ(b))n−1 (30)

In the without replacement case, given p and n, we define the beliefs on pivotalities
for each state and signal received as:

Given signal is red

αr = σ(r)(pn−1)σ(b)((1−p)n) (31)

βr = σ(r)((1−p)n−1)σ(b)(pn) (32)

Given signal is blue

αb = σ(r)(pn)σ(b)((1−p)n−1) (33)

βb = σ(r)((1−p)n)σ(b)(pn−1) (34)

Using equations (31)-(34) and Table 23, we have that, in the without replacement

case, a juror votes informatively if and only if
(

1−p
p

) 1
n(2p−1)

< σ(r)
σ(b)

<
(

p
1−p

) 1
n(2p−1)

;

and a juror votes strategically if and only if
(

p
1−p

) 1
n(2p−1)

< σ(r)
σ(b)

.

A.4. Proof of Proposition 3

First of all, note that for the with replacement case, since the signals are independent
of each other, we have αr = αb and βr = βb. Henceforth, in the rest of the proof we
will omit the signal subscripts for ease of notation.

Secondly, we denote the level of the juror in their pivotality probability as αk and βk

for k ∈ N0.
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Level-1 By assumption, a level-0 juror votes uninformatively. This translates to
α1 = β1 > 0 and α1

β1
= 1. By Table 23, a level-1 juror votes blue when the signal

is blue, σ1(b) = 0, if and only if
α1

β1

<
p

1− p
, and votes red when the signal is red,

σ1(r) = 1, if and only if
α1

β1

>
1− p

p
. Since p > 1

2
and α1

β1
= 1 by assumption, the

informative voting condition for both signals is satisfied and level-1 juror always votes
informatively.

Level-2 By the above discussion, a level-1 juror always votes informatively. By
definition, a level-1 juror receives the signal r with probability p in state R and with
probability 1 − p in state B. Hence, assuming the state is R and there are n jurors in
total, a level-2 juror believes to be pivotal with probability α2 = pn−1; and assuming
the state is B, she believes to be pivotal with probability β2 = (1 − p)n−1. Thus, we

have α2

β2
=
(

p
1−p

)(n−1)

. Given p > 1
2
, we have p

1−p
> 1 > 1−p

p
. Moreover note that

∀k > 1, we have p
1−p

<
(

p
1−p

)k
. Setting k = n− 1 and noting k > 1 is equivalent to

n > 2, we have 1−p
p

< p
1−p

<
(

p
1−p

)(n−1)

. Hence both conditions for strategic voting
in Table 23 are satisfied.

Level-3 Given a level-2 juror always votes red, a level-3 juror believes to be always
pivotal, α3 = β3 = 1. Given α3

β3
= 1, analogue to the level-1 behavior, every level-3

juror votes informatively.

Level-4 and above Due to the assumed degenerate population belief on the next
lower level k − 1, every even-leveled juror behaves the same way as a level-2 juror
and always votes red. Furthermore, every odd-leveled juror behaves the same way as
a level-3 juror behaves and always votes informatively.

A.5. Proof of Proposition 4

In the following proof, we denote the level of the juror and the received signal in their
pivotality probability as αs

k and βs
k for k ∈ N0 and s ∈ {r, b}. If the signal subscript is

omitted in the subsection of the proof, this indicates that we have αr = αb and βr = βb.

Level-1 By assumption a level-0 juror votes uninformatively. Introducing an ϵ pos-
sibility to make a mistake in a symmetric manner does not change this fact. Hence, we
have α1 = β1 > 0 which, in turn, implies α1

β1
= 1. By Table (23), a level-1 juror votes

blue when the signal is blue if and only if
αb
1

βb
1

<
p

1− p
, and votes red when the signal
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is red if and only if
αr
1

βr
1

>
1− p

p
. Since p > 1

2
and α1

β1
= 1 by assumption, informative

voting condition for either type of signal received is always satisfied and a level-1 juror
always votes informatively.

Level-2 Based on the above discussion, a level-1 juror always intend to vote infor-
matively. Also note that she is assumed to make a mistake with some probability ϵ > 0

and votes against her signal. Given a juror receives a red signal, her probability of
being pivotal under states R and B are respectively defined as:

αr
2 = (1− ϵ)(np−1)ϵ(n(1−p)) (35)

βr
2 = (1− ϵ)n(1−p)−1ϵ(np) (36)

Using equation (35) and (36), we have αr
2

βr
2
=
(
1−ϵ
ϵ

)n(2p−1). Using Table (23), given the
received signal is red, in order for a level-2 juror to vote strategically we need:(

1− ϵ

ϵ

)n(2p−1)

>
(1− p)

p
(37)

With a bit of algebra, inequality (37) becomes:

ϵ <
1

1 +
(

(1−p)
p

) 1
(2p−1)n

(38)

Hence, given ϵ satisfies inequality (38), a level-2 juror votes red when she receives a
red signal.

Next, assume that the level-2 juror receives a blue signal. Then we have:

αb
2 = (1− ϵ)(np)ϵ(n(1−p)−1) (39)

βb
2 = (1− ϵ)n(1−p)ϵ(np−1) (40)

Using equation (39) and (40), we have αb
2

βb
2
=
(
1−ϵ
ϵ

)n(2p−1). Using Table (23), given the
received signal is blue, in order for a level-2 juror to vote strategically we need:(

1− ϵ

ϵ

)n(2p−1)

>
(p)

1− p
(41)

With a bit of algebra, equation (41) translates to:

ϵ <
1

1 +
(

p
(1−p)

) 1
(2p−1)n

(42)

Hence, given ϵ satisfies inequality (42), a level-2 juror votes red when she receives a
blue signal.
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Lastly, since p > 1
2
, we have:

1

1 +
(

p
(1−p)

) 1
(2p−1)n

<
1

1 +
(

(1−p)
p

) 1
(2p−1)n

Hence, inequality (42) is a sufficient condition for inequality (38) to be satisfied. Thus,
given inequality (42) is satisfied, a level-2 juror always votes red.

Level-3 Given a level-2 juror always votes red, a level-3 juror believes to be pivotal
with probability α3 = β3 = (1− ϵ)(n−1). Since α3

β3
= 1, just like a level-1 juror, every

level-3 juror votes informatively.

Level-4 and above Given the cyclical nature of the behavior at even and odd lev-
els of thinking, every even-leveled juror behaves the same way as a level-2 juror and
always votes red.

Given the cyclical nature of the behavior at even and odd levels of thinking, every
odd-leveled juror behaves the same way as a level-1 juror and always votes informa-
tively.

A.6. Relaxing the level-0 jurors’ uninformativeness
assumption

Assume that a level-0 juror votes her signal with probability θ and votes the opposite
of her signal with probability 1 − θ. Given this assumption, a level-0 juror votes
randomly given θ = 1

2
and as θ goes to 1 or 0, the informativeness of level-0 juror’s

vote increases. For θ = 1, a level-0 juror is equivalent to a level-1 juror. Given
this assumption, when the sampling is without replacement, we have the following
pivotality values for the level-1 juror for the case where the signal is red as:

αr
1 = θnp−1(1− θ)n(1−p) (43)

βr
1 = θn(1−p)−1(1− θ)np (44)

Given equations 43 and 44, using the Table 23, we get the following inequality for
level-1 juror to vote informatively when she receives a red signal:(

θ

1− θ

)n(2p−1)

>
1− p

p
(45)

Similarly for the case when the level-1 juror receives a blue signal, we have the fol-
lowing pivotality values:

αb
1 = θnp(1− θ)n(1−p)−1 (46)

βb
1 = θn(1−p)(1− θ)np−1 (47)
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Given the equations 46 and 47, using the Table 23, we get the following inequality for
level-1 juror to vote informatively when she receives a blue signal:(

θ

1− θ

)n(2p−1)

>
p

1− p
(48)

Define K as
(

p
1−p

) 1
n(2p−1)

. Then with a bit of algebra, we get the following condition
for the level-1 juror to vote informatively:

θ ∈
(

1

1 +K
,

K

1 +K

)
(49)

First note that given p > 1
2

we have
1

1 +K
<

K

1 +K
. Then recall that θ represents

the probability for a level-0 juror to vote informatively, and note that given the con-
straint for θ in (49), a level-1 juror votes informatively. Hence, given a level-0 juror
votes her signal, i.e. votes informatively with probability θ such that it satisfies the
constraint (49), a level-1 juror votes informatively.

Setting p to 2
3
, for n = 3, the inequality in (49) becomes

(
1
3
, 2
3

)
; and for n = 6, it

becomes
(

1
1+

√
2
,

√
2

1+
√
2

)
∼ (0.41, 0.59).

For the with replacement case, first note that since the signals are independent, we
have αr

1 = αb
1 and βr

1 = βb
1. Hence, we drop the superscript and define the following

pivotality values:

α1 = (pθ + (1− p)(1− θ))n−1 (50)

β1 = ((1− p)θ + p(1− θ))n−1 (51)

Given the equations in (50) and (51), using Table 23, we have the following inequal-
ity conditions for a level-1 juror to vote informatively:

pθ + (1− p)(1− θ)

(1− p)θ + p(1− θ)
>

1− p

p
(52)

pθ + (1− p)(1− θ)

(1− p)θ + p(1− θ)
<

p

1− p
(53)

Define K̃ as
(

1−p
p

) 1
n−1

. Then with a bit of algebra, we get the following condition for
a level-1 juror to vote informatively:

θ ∈

(
p(1 + K̃)− 1

(2p− 1)(1 + K̃)
,

p+ K̃(p− 1)

(2p− 1)(1 + K̃)

)
(54)

Setting p to 2
3
, for n = 3, the inequalities in (52) and (53) approximately translate to

θ ∈ (0.24, 0.76) and for n = 6, they translate to θ ∈ (0.4, 0.6).
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Figure 1: Bounds for θ given n and sampling method

As can be observed in Figure 1, for both sampling cases, as the group size increases,
the range for θ, or in other words, the degree of a level-0 juror’s informativeness in her
vote decreases. For a level-1 juror to not vote informatively, i.e. to vote strategically,
her belief on the informativeness of the aggregation of the other jurors’ vote should
overweight the informativeness of her signal. As the number of other jurors in the
jury increases the necessary informativeness each of these jurors should provide with
their vote for their aggregate informativeness to overweight the informativeness of the
juror’s signal decreases.

B. GPT-4 Classification Procedure

We provided GPT-4 with the following initial prompt, following the guidelines pro-
vided by OpenAI (OpenAI, 2023b):

The total length of the content that I want to send you is too large to send
in only one piece.

To send you this content, I will follow these rules:

[START PART 1/3] this is the content of the part 1 out of 3 in total [END
PART 1/3]

Then you just answer: ”Received part 1/3”

Once all parts are sent, I will indicate it by stating that ’ALL PARTS ARE
SENT’.
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The text that I will provide you in parts is a classification instructions.
Once all the parts of these instructions are sent, you will have an under-
standing on how to classify a text. Then I will provide a list of text for you
to classify based on these instructions.

Following this initial prompt, we divided the classification instructions into three
separate parts due to the prompt token limit of GPT-4 (OpenAI, 2023a). After provid-
ing the instructions, we presented approximately 30 texts (subject messages) to GPT-4
for classification. We repeated this process of classification until all the text data was
classified.

Outputs for GPT-4 were obtained using ChatGPT version 4, updated last on March
24, 2023. We opted for ChatGPT to access GPT-4 as at the time of conducting our
analysis there was no public access to GPT-4 via any other means. GPT-4 within Chat-
GPT is set to operate at an immutable temperature of 0.7 (Aljanabi et al., 2023). The
temperature parameter is crucial in GPT models as it modulates output variability, with
a setting of 0 providing uniform, consistent responses to identical prompts, and a set-
ting of 1 introducing the greatest variation in responses (OpenAI, 2023a). Therefore,
employing ChatGPT with its inherent output variability at a temperature of 0.7 intro-
duces a notable level of unpredictability in classification tasks. To mitigate this and
enhance the reliability of our classification, we duplicated the procedure, accepting
classifications only when they aligned in both runs.
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C. Experiment instructions

Introduction
You are about to participate in an experiment in team decision making. Please follow the
instructions carefully.

In the experiment you may earn a considerable amount of money. Your decisions and the
decisions of the other participants determine the amount. You will be instructed in detail how
your earnings depend on your and the others’ decisions. All that you earn is yours to keep,
and will be paid to you in private and in cash, after today’s session.

It is important to us that you remain silent and do not look at other people’s screens. If you
have any questions or need assistance of any kind, please raise your hand, and an experi-
menter will come to you. If you talk, exclaim out loud, etc., you will be asked to leave. Thank
you.

Since this is a team experiment, you will at various times be matched randomly with another
participant in this room in order to form a team that plays as a single entity. Your team’s
earnings will always be shared equally between you and your team partner.

The experiment consists of four parts (Parts I, II, III and IV). The parts are independent of
each other but feature the same task in different settings. Each part consists of two rounds
that require you to take a single decision. The way you interact as a team to take decisions
will be the same throughout the experiment. Common features to the Parts will be given in the
general instructions section.

Now, let us explain how your Team’s Decision is determined. First of all, both you and
your team partner will individually submit a Final Decision and the computer will randomly
choose one of these two final decisions as your team’s decision. The probability that your
team partner’s final decision is chosen is equal to the probability that your final decision will
be chosen (i.e. your chances are 50:50). However, you have the possibility to influence your
partner’s final decision in the following way: Before you enter your final decision, you can
propose to your partner a Suggested Decision and send her one and only one text Message.
Note that this message is your only chance to convince your partner of the reasoning behind
your suggested decision. Therefore, use the message to explain your suggested decision to
your team partner. After you finish entering your suggested decision and your message, these
will be shown to your team partner. She will then make her final decision. Similarly, you will
receive your partner’s suggested decision and message. You will then also make your final
decision. As indicated above, once you both enter your final decision, the computer chooses
randomly one of your final decisions as your team’s decision.

If you have any questions at this point, please raise your hand. In order for you to get familiar
with the messaging system, you will now try it out in a Test Period. Please turn the page for
further instructions.

Test period
A participant in this room is now randomly chosen to be your team partner. The Test Period
has two rounds, with one question to answer in each round. Since this is only a test, your
earnings will not depend on any decision taken now. In both test rounds, you will need to
answer a question about the year of an historic event. The team that is closest to the correct
year wins. Ties will be broken randomly by the computer.

41



As described, you will be able to send one Suggested Decision with your proposed year
and an explaining Message. After having read your partner’s suggested decision and mes-
sage, you will enter your Final Decision. As described earlier, either your or your partner’s
final decision will be chosen randomly to be your Team’s Decision.

The messenger allows Messages of any size. However, you have to enter the message
line by line since the input space is only one line. Within this line, you can delete text by using
the usual “Backspace” button of your keyboard. By pressing “Enter” on the keyboard, you add
the written sentence to the message. Please note that only added sentences will be sent and
seen by your partner. The words in the blue input line will not be sent. You can always delete
previously added sentences by clicking the “Clear Input” button. The number of lines you send
is not limited. You can therefore send messages of any length. You finally send the message
to your partner by clicking the “Send Message” button.

When you are ready, please click the “Ready” button to start the Test Period.

General Instructions
In every round of every part of the experiment you will be matched with a single, randomly
chosen, different team partner. Together with other teams, which will also differ in every round,
your team will face the following situation.

Your team along with other teams will constitute a committee in which each team has the
right to a single vote.

There will be two colored urns containing some number of colored balls. The urns will either
be red or blue, and either colored urn contains some number of red balls and some number
of blue balls.

The color of the urn will determine the ratio of the number of red and blue balls in it. In the
red urn, there will be two times more red balls than blue balls and in the blue urn, there will
be two times more blue balls than red balls.

Every round, your newly formed committee will be assigned to a single urn whose color
will be randomly determined by the computer as either blue or red with the equal probabil-
ity.

Your team – like all other teams in your committee – will observe the color of only one ball
drawn from the urn assigned to your committee. Your task as a committee is to correctly
guess the color of the urn. The guess of the committee is determined by the votes of its
teams.

The votes of the teams in the committee will be aggregated to a committee decision accord-
ing to the unanimity voting rule. The rules of the voting rule are as follows:

• If all the teams vote for the red color, then the color red will be the committee’s guess.

• If at least one of the three teams votes for the blue color, then the color blue will be the
committee’s guess.

In other words, in order for the committee to select the red color as the guess, all the teams
have to vote red. Thus, the teams need to reach a consensus in order to guess red; otherwise,
the guess of the group will be blue.

If the committee correctly guesses the color of the urn they are assigned to, every team
member in the committee will receive 200 Eurocents. If the committee does not correctly
guess the color of the urn ,then every team member in the committee will receive 20 Euro-
cents.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
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behind your suggested decision. After this information is exchanged, both of you enter your
Final Decision, from which the computer randomly chooses the Team’s Decision.

The instructions of the Parts will specify the number of teams in the committee, the number
of balls in the urn and the exact procedures of drawing a ball from the urn. Are there any
questions at this point?

Part I
You are about to start Part I of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of three teams (your team and two other teams).

In this part, the balls are drawn from an urn that contains two balls of the same color of
the urn and one ball of the ”opposite” color. Your team will only observe the color of a single
ball drawn from the urn. For all three teams, the balls will be drawn without replacement.
That means that a drawn ball is not returned back to the urn for subsequent draws. There
will therefore always be two teams observing the correct color and one team observing the
incorrect color (with respect to the color of the urn assigned the teams). Your team will not
know or observe the colors of the balls given to the other teams in your committee.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not
be sent. Press “Enter” to add them to the message.) After this information is exchanged, both
of you enter your Final Decision, from which the computer randomly chooses the Team’s
Decision.

When you click the “Ready” button, you will start Part I of the experiment.

Part II
You are about to start Part II of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of six teams (your team and five other teams).

In this part, the balls are drawn from an urn that contains four balls of the same color
of the urn and two balls of the ”opposite” color. Your team will only observe the color of a
single ball drawn from the urn. For all six teams, the balls will be drawn without replacement.
That means that a drawn ball is not returned back to the urn for subsequent draws. There
will therefore always be four teams observing the correct color and two teams observing the
incorrect color (with respect to the color of the urn assigned the teams). Your team will not
know or observe the colors of the balls given to the other teams in your committee.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not
be sent. Press “Enter” to add them to the message.) After this information is exchanged, both
of you enter your Final Decision, from which the computer randomly chooses the Team’s
Decision.

When you click the “Ready” button, you will start Part II of the experiment.

43



Part III
You are about to start Part III of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of three teams (your team and two other teams).

In this part, the balls are drawn from an urn that contains two balls of the same color of
the urn and one ball of the ”opposite” color. Your team will only observe the color of a single
ball drawn from the urn. For all three teams, the balls will be drawn with replacement. That
means that a drawn ball is returned to the urn for the subsequent draws. Independently of
other teams’ draws, each team will have a 2/3 chance of observing the correct color and a
1/3 chance of observing the incorrect color (with respect to the color of the urn assigned the
teams). Your team will not know or observe the colors of the balls given to the other teams in
your committee.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not
be sent. Press “Enter” to add them to the message.) After this information is exchanged, both
of you enter your Final Decision, from which the computer randomly chooses the Team’s
Decision.

When you click the “Ready” button, you will start Part III of the experiment.

Part IV
You are about to start Part IV of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of six teams (your team and five other teams).

In this part, the balls are drawn from an urn that contains four balls of the same color of
the urn and two balls of the ”opposite” color. Your team will only observe the color of a single
ball drawn from the urn. For all three teams, the balls will be drawn with replacement. That
means that a drawn ball is returned to the urn for the subsequent draws. Independently of
other teams’ draws, each team will have a 2/3 chance of observing the correct color and a
1/3 chance of observing the incorrect color (with respect to the color of the urn assigned the
teams). Your team will not know or observe the colors of the balls given to the other teams in
your committee.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not
be sent. Press “Enter” to add them to the message.) After this information is exchanged, both
of you enter your Final Decision, from which the computer randomly chooses the Team’s
Decision.

When you click the “Ready” button, you will start Part IV of the experiment.
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D. Classification instructions

D.1. Welcome
Thank you for participating in this experiment. In this document you will find instructions as to
how this experiment works. You will be asked to classify messages that have been collected
in an experiment on voting games. You as well are in an experiment which allows us to give
you particular incentives and makes it easier for us to pay you.

To take part in the experiment, we assume that you are familiar with the level-k model
as it has been introduced by Nagel (1995). However, in order to clarify potential questions
of terminology, we reproduce the main features of the level-k model. In addition we provide
detailed instructions of the original experiment, which explain the voting game and also give
you a short introduction to voting games. Please read all information carefully.

Classification Task
General Comments

Your task is to classify the messages sent by subjects to their team member into their accord-
ing level of thinking. You will read each comment and classify it according to the guidelines
below. You can enter your assessment into the excel sheet provided to you. The excel sheet
will have 6 different columns: The first four columns (which are already provided/filled) will
identify the message by indicating the experiment, the part, the subject, the period. The fifth
column is the classification column that we want you to fill and the sixth column is to indicate
your personal comments on your task to further clarify your classification choice if necessary.
The order of these columns will follow the transcript we will provide you.

It is very important that you double check whether the first 3 columns are filled correctly, i.e.
that you enter the data for the correct subject, period, part and experiment. Based upon the
guidelines below your task will be to fill up the classification column with an integer between 0
and 3 (“0” for level-0, “1” for level-1, “2” for level-2 and “3” for level-3) or leave it empty. If you
find interesting elements that occur frequently but that have not been picked up by us, feel free
to add a new column and mark all messages that contain the element. You can then specify
to us in an email what exactly this element is.

For each individual classification, your assessment will be benchmarked against another
classifier’s assessment. Your personal remuneration is based on the number of matches of
the level classification. A match is a classification that is congruent with the classification of
another independent classifier. Each match will be remunerated with 0.07 Euro.

Please read this document and the instructions for the experiment entirely in order to get an
overview and only then start the classification based on the player’s sent message and action
proposed. If you have any questions please do not hesitate to contact us.

The Original Experiment

A single experimental session consists of 4 parts and every part consists of 2 periods. In
every part, every subject is randomly paired with another one to form a team. Depending on
the treatment, every team then is randomly matched with 2 or 5 other teams to form a voting
group. Then every group will be assigned to a blue or red urn and every team in the group will
draw a ball from their assigned urn. The blue (red) urn contains twice more blue (red) balls
then red (blue) balls. One treatment variable is the group size, in every experiment, in parts 1
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(2) and 3 (4) the groups will consists of 3 (6) teams and accordingly the urns will contain 3 (6)
balls. The other treatment variable is the draw mechanism, depending on the session, either
for the first 2 parts or the last 2 parts, the balls will be drawn from the urn without replacement
(i.e. any ball picked will not be placed back to the urn). For the other 2 parts, the balls will
be drawn with replacement (i.e. any ball picked will be placed back to the urn before the next
draw). In addition, we have included classroom experiments to the data set (experiments 7
and 8). In both experiments, the balls are drawn from the urn without replacement. Both
experiments have two parts where in the first part the group size is 3 while in the second part
the group size 6.

The goal of every group is to correctly state the color of the urn they are assigned to. Ev-
ery team submits a vote (either red or blue) and if every team in the group votes for red then
the group’s decision will be red, otherwise it will be blue. Beyond this brief description of the
experimental setup, please read the instruction sheets given to the subjects to have a better
understanding of the situation of subjects 24.

How do the messages get produced? Every subject in a team observes the team’s drawn
ball and then makes a decision on the color of the urn. Then, they send a message to their
team member explaining why they should vote for the suggested color. Next, the team mem-
bers receive the suggestions and the message of their teammates, and make their final de-
cision on their own. Either of the team member’s decision is equally likely to be chosen as
the team’s final voting decision. This experimental methodology is developed to elicit subjects’
reasoning through their sent messaged (see Burchardi and Penczynski, 2014). In the class-
room experiments (experiments 7 and 8), subjects were not paired into teams but instead they
were asked to elaborate on their reasoning for taking the action they have taken.

Model
General Model

It is assumed that you are familiar with the level-k model as it has been introduced by Nagel
(1995) or represented by Camerer (2004). In order to clarify potential questions of terminology
and introduce the main features of the model we quickly reproduce the main features of the
model in the terminology used in this document. The level-k model of bounded rationality
assumes that players only think through a certain number (k) of best responses. The model
has four main ingredients:

Population distribution: This distribution reflects the proportion of types with a certain
level k ∈ N0 = {0, 1, 2, 3, 4, 5, . . .}.

Level-0 distribution: By definition, a level-0 player does not best respond. Hence, his
actions are random to the game and distributed randomly over the action space. In our case,
the action space is A = {Red,Blue} where Red and Blue represent the voting choice of the
player. Note that, our model does not incorporate salience by assuming higher probabilities in
the level-0 distributions for the action that is salient due the signal received (i.e. if a blue ball is
received and the player is playing random, the player, due to the availability of the blue signal,
will chose to vote blue)

Level-0 belief: In the model, the best responses of players with level k > 0 are anchored in
what they believe the level-0 players play. Their level-0 belief might not be consistent with the
level-0 distribution. For best responding, all that matters is the expected payoff from choosing
an action from the action space A = {Red,Blue}.

Population belief: Players do not expect other players to be of the same or a higher level
of reasoning. For a level-k player, the population belief is therefore defined on the set of levels

24there are two versions of the instruction sheet where the versions vary in their of treatments. We
are providing you with one copy. Please do not base the treatment ordering on the ordering of the
instruction sheet.
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strictly below k. It follows that level-0 players have no defined belief, level-1 players have a
trivial belief with full probability mass on {0} (i.e. the belief that everyone else is level-0), level-
2 players have a well defined belief on {{0}, {1}}. From level 3 higher order beliefs are relevant
as level-3 players have to form a belief about level-2’s beliefs.

Specific Model

We consider a game with n players (jurors in the voting context). The game starts by nature
choosing a state of the world S in Ω = {Red,Blue} with probability r and 1 − r respectively.
The players do not observe the state, but each acquires a private signal s about the realized
state of the world. If the true state is Blue, then each player observes an independent (or
geometrically dependent25) Bernoulli random variable (the private signal) which is blue with
probability p and red with probability 1 − p (and conversely for when the true state is Red).
After observing their private signals, players chose an action a (a vote) from the action space
A = {Red,Blue}. Given the votes of the players, 1 ≤ k∗ ≤ n represents the number of
votes needed for Red to be chosen for the aggregate decision. In other words, if k∗ many or
more players vote for Red, then the group decision is Red otherwise it is Blue. The utility of
jury j when she takes action a with certainty given her signal is s and given the state is S is
defined as uj(σj(s) = a, S). Given any signal s, the utility u : A x Ω 7→ R for jury j is further
defined by uj(σj(s) = blue,Blue) = uj(σj(s) = red,Red) = 0, uj(σj(s) = red,Blue) = −q and
uj(σj(s) = blue,Red) = −(1− q), where 0 < q < 1.

In all our experiments, we used k∗ = n (i.e., the unanimity voting rule), r = 0.5, q = 0.5 and

p =
2

3
. As previously explained treatments vary in the number of players n between 3 and 6.

Under the experimental set-up, the model provides the prototypical behavior of the subjects
given their level as follows:

n = 3 or n = 6 and with replacement:

When the blue ball is observed, optimal strategy for:
- level-1 player: vote blue
- level-2 player: vote red

When the red ball is observed, optimal strategy for:
- level-1 player: vote red
- level-2 player: vote red

n = 3 and without replacement:

When the blue ball is observed, optimal strategy for:
- level-1 player: vote blue
- level-2 player: vote red

When the red ball is observed, optimal strategy for:
- level-1 player: vote red
- level-2 player: vote red or blue
(Voting red is strictly preferred to voting blue under additional assumption that the level-2 player
assumes with some small probability ϵ that the other players are level-0

25Independent case refers to the aforementioned with replacement draws case while the geometrically
dependent case refers to the without replacement case
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n = 6 and without replacement:

When the blue ball is observed, optimal strategy for:
- level-1 player: vote blue
- level-2 player: vote red or blue26

(Voting blue is strictly preferred to voting blue under additional assumption that the level-2
player assumes with some small probability ϵ that the other players are level-0 and not level-1)

When the red ball is observed, optimal strategy for:
- level-1 player: vote red
- level-2 player: vote red or blue
(Voting red is strictly preferred to voting blue under additional assumption that the level-2 player
assumes with some small probability ϵ that the other players are level-0)

Guidelines for classification
General Comments:

• Subjects do not necessarily describe every step of their thinking; therefore, it may not
always be obvious to decide which level they are. In many comments, any indications
of a level of thinking may be partial or implicit, you should then indicate the most likely
level of reasoning of the player.

• If the message indicates to simply refer to a previous message (’same as before/above’),
then you can use the previous message’s evaluation to determine the level of the cur-
rent message. Please indicate this inference with a 1 in the column “Other message
inference”.

• If you are unsure of the level of the message, you should indicate the level you think is
more likely.

• We have deliberately chosen not to disclose the action taken by the subject. You may
still see in their comment which action they chose. We do not want you to base your
classification on the action taken as it may be misleading.

Empty classification:

If no message has been formulated you should leave the classification empty. Also, you should
leave the classification empty, if you are not sufficiently certain that any of the types below is
capturing the strategic thinking in the message.

Level-0 Player:

Characteristics Chooses randomly, without justification or through some justification com-
pletely unrelated to the task. Might not have understood the game or shows no interest
in the game or in thinking about it.

Examples ’My favorite color is blue, So I chose blue.’
’did not exactly understand this experiment seems to be just depending on luck’
’Just a guess’

26Note that for n = 3 voting red is strictly preferred to voting blue
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Note Comments such as “It is obviously blueâ or âPlay red, trust me!â should not be con-
sidered as level-0 thinking as these comments to some extent signal some level of
understanding/interest of the task. Such comments are likely to be level-1 comments
yet without any additional information, you should leave the specific cell empty.

Level-1 Player:

Characteristics Always follows his own signal. The subject may argue in favor of playing his
own signal through some probability argument

Examples ’The probability that the red ball we observe is out of the red urn is twice the
probability that it is out of the blue urn’
’Our signal is blue. Letâs play blue.’

Note The key idea in defining a level-1 player is to identify some thinking process that signals
the subjectâs interest/understanding of the task and the private signal. Furthermore, it
is important that the subject does not offer any argument acknowledging the potential
votes of the other teams and how to vote accordingly (i.e. adjusting the strategy given
what others are expected to do).

Level-2 Player:

Characteristics Assume that all other players almost always follow their signal (i.e. she as-
sumes almost all the other players are level-1 while an epsilon portion of them are
level-0). Player does offer an argument acknowledging the potential votes of the other
teams and how to vote accordingly (i.e. a best response given others are most likely
playing their signal). In other words, if you identify any comment that indicates that the
subject assumes (or considers the case) where the other players in her group play their
signal, you should consider the possibility that the subject is a level-2 player.

Examples ’I have a blue ball. If we have the blue urn, someone else also has a blue ball and
as a result our group will chose blue regardless of my vote. If we have the red urn, I
am the only one with the blue ball and if I vote blue, we will chose the wrong urn. So I
should vote for red.’
’In case two teams choose red and one chooses blue, blue will be taken. That means
that choosing red has a higher chance of being a good decision.’
’I guess this is more about luck because there is no way to know it for sure. I would
say blue just because of the higher probability. Also I like turtles Also it is likely that one
other team will pick blue and then it is that color anyways’
’There is no point for us to take blue I think the chances for us to get the right color are
higher if we stick with red’ [red ball is observed]
’I suggest red because we donât hurt anyone with this decision If the others go for blue
because they have a blue ball, the committeeâs decision will be blue regardless of our
decision’
’[â¦] we could be the deciding vote for blue if the other two choose red’ ’Choosing blue
isnât as helpful as choosing red, because: only one blue ball can overturn our whole
decision but only a unanimous decision for red can help us the same way’

Note In order to discern the two types, you should look for more than any trivial arguments
such as the ones given under level-1. There may be cases where the message starts
as a level-1 argument and then as the subjects elaborates on her reasoning, she starts
considering the strategy of the other teams and justify her decision accordingly (see the
third example above). In such cases, this message should be considered as level-2.
The acknowledgment of other teamsâ voting strategy may not always be obvious or
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may be worded differently such as ’hurting the otherâs decision’ or ânot being helpfulâ
(see the last three examples above)

Level-3 Player:

Characteristics Assumes that almost all other subjects are level-2 players (partially degen-
erate beliefs). The reasoning in a level-3 player message will have similarities with a
level-1 player message but it will have additional arguments indicating that she assumes
others are level-2 players.

Examples ’If everyone else assumes others play their own signal then they will always play
red. Since I have the blue ball, it is more likely that we have the blue urn so I will vote
blue’
’I think itâs all the same rule. Since I have the blue ball, it is more likely that we have the
blue urn so I will vote blue’

Note As stated above, level-3 players are likely to follow their signal like a level-1 player yet
they will argue to do so through a much more intricate argument (unlike a level-1 player
merely stating probabilities to argue her action). Level-3 players are rare. Higher levels
(level-4 etc.) are assumed to not occur; therefore, you should consider only the first 4
levels of thinking.

Thank you.
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