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Abstract

Experiments which elicit preferences for conditional cooperation in public goods games

with linear payoffs find that about one-quarter of people approximately match the average

contributions of others. To identify from among possible explanations proposed for this strong

form of conditional cooperation, we extend the elicitation method of Fischbacher et al. (2001)

and study voluntary contributions games with a broader range of economic and strategic in-

centives. We find that most strong conditional cooperators are sophisticated in responding to

these incentives, by matching contributions only when doing so leads to an overall welfare

improvement. Our data favour an account of conditional cooperation based on social norm

compliance, and are not consistent with accounts in which these people are motivated by in-

equity aversion or warm-glow giving, or are confused about the economic incentives presented

by the elicitation mechanism.
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1 Introduction

People are often willing to make voluntary contributions to public goods, and not infrequently do
so in amounts which cannot easily be rationalised by accounting for the private benefits people
might receive from their own use of the public good. Prosocial behaviour in and of itself should
not be surprising. However, most people are not deep-pocketed enough to be able to respond to
every opportunity to give to a cause they might in principle deem worthy, and may concentrate
their contributions on only a few.

One criterion for deciding whether to contribute, and the appropriate contribution amount,
could be to look at the contributions of others. Fischbacher et al. (2001) and a series of subsequent
studies, including Fischbacher and Gächter (2010) and Fischbacher et al. (2012), have proposed
that at least some contributions to public goods are motivated by such conditional cooperation.
They build on an extensive literature of laboratory and lab-in-the-field experiments using a simple
voluntary contribution mechanism (VCM) game. In the standard environment, a person’s cash
earnings are linear and additively separable in the amount of their own contribution, and the total
contributions of others in the (laboratory) economy. Making a voluntary contribution incurs a
private financial (opportunity) cost which results in a financial benefit to others in the interaction.
Many participants make positive contributions in this setting (Chaudhuri, 2011).

Fischbacher et al. (2001) developed a protocol that modifies the standard simultaneous-move
contribution game to elicit conditional contribution strategies, which specify how much the partic-
ipant would contribute if they knew the contributions made by other members of their group. In
the standard case in which earnings are linear and additively separable in each member’s contribu-
tion, most people state they would increase their own contributions at least somewhat in response
to larger contributions by others. The degree of responsiveness varies widely. Many contribu-
tion strategies prescribe a weak response, specifying a contribution between zero and the average
amount contributed by others. Fischbacher and Gächter (2010) note that, because the average re-
sponse of participants is to increase their contributions by less then average of others, this could be
one explanation for the regularity that contributions tend to decline over time in both experimental
and naturally-occurring settings.

Looking only at the average response masks the existence of several distinct patterns of be-
haviour. Fallucchi et al. (2019) re-analysed the data from several studies which have used the
Fischbacher et al. (2001) protocol, and point out that the distribution of responses is multi-modal.
The single most common contribution strategy is to “free ride” by contributing nothing. The next
most common strategy is to match the average contributions of others exactly one-for-one. Overall,
about one-quarter of people can be characterised as adopting this type of conditionally cooperative
response in which they match average contributions at or near a one-for-one rate.
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One-for-one matching is a simple rule to implement, and if applied to the myriad of oppor-
tunities in life to make voluntary contributions, matching would provide a useful selection rule
determining both which public goods to contribute to, and in what amounts. This heuristic would
be reinforced among people who subscribe to the principle that the contributions of others set a
social norm or convention which is important to follow. However, because one-for-one match-
ing is a simple and potentially salient rule of thumb, social norms are not necessary to explain
conditionally cooperative behaviour. It could equally be that these participants either do not un-
derstand the financial incentives of the environment, or disregard them and treat the elicitation
of the contribution strategy as a question about appropriate behaviour in general rather than the
economic environment set in the experiment. This possibility has been raised, for example, by
Burton-Chellew et al. (2016).

If we can be confident that at least most participants, and in particular conditionally cooperative
ones, are reporting contribution strategies which are informed by an understanding of the economic
environment, we can interpret the results obtained by using methods such as that of Fischbacher
et al. as shedding some light on the factors that shape peoples’ contribution decisions. Validat-
ing the behaviour of the heterogeneous types which have been identified in linear VCM games
contributes to the more general question of how the distribution of heterogeneous agents affects
aggregate outcomes (e.g. Fehr and Tyran, 2005; Bruhin et al., 2018). However, the standard lin-
ear VCM environment is not able to distinguish among these explanations, and therefore does not
provide enough evidence on its own to extrapolate behaviour outside this useful but basic setting.

We report on an experiment which augments the standard linear VCM environment with re-
lated ones designed to distinguish among potential explanations for conditional cooperation. In
these additional environments, following one-for-one matching of contributions leads to socially
inefficient outcomes in some contingencies. Social norms are generally associated with a domain
of appropriate applicability. In our settings, we propose that following the norm by matching one-
for-one is appropriate when doing so increases group earnings, but is dubious when doing so leads
to inefficiency. The results of the experiment can therefore distinguish between a naive applica-
tion of a rule of thumb that disregards the economic structure of the environment from a more
sophisticated integration of the economic incentives alongside other considerations.

We find the methods proposed by Fischbacher et al. (2001) and Fallucchi et al. (2019) for
classifying people into behavioural types based on the linear and additively separable environ-
ment have predictive value on the contribution strategies those people will choose in other, related
environments. People who are classified as “free riders” in the linear game also maximise their
own earnings in the other games. One-for-one conditional cooperators remain well-distinguished
from other types. Importantly, their contribution strategies are consistent with that sophisticated
response to the environment: they generally follow the one-for-one matching rule only when do-
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ing so is not Pareto-dominated. We provide a simple model of social cooperation norm compli-
ance which integrates these considerations and can generate the contribution strategies we observe
among people classified in this type.

We are able to confirm the sophistication of conditional cooperators by including environ-
ments in which the own-earnings-maximising contribution level is positive, and may also vary as
a function of the contributions of others. To accomplish the latter, in two of our environments
the consequences of one’s own contribution is dependent on the contributions of others. This in-
terdependence is a feature of many familiar settings which can be modelled within the voluntary
contributions framework. Parents with school-aged children are often asked to volunteer to chaper-
one on a number of class field trips throughout the year. If other parents are not willing to volunteer,
then the optimal response for a family is to volunteer as much as possible, as, in the most extreme
case, an insufficient number of chaperones might lead to cancellation of trips, disappointing the
children. However, if a family anticipates there will be many volunteers among the other parents,
then they would likely respond by putting themselves forward for fewer events. In this setting,
contributions are substitutes. Complementarity among contributions may arise, for example, on
online review sites which aggregate the comments and evaluations of many people on restaurants,
hotels, and other products. Using information about the reviews of others, these sites can offer cus-
tomised recommendations. The more reviews a person submits of their own experiences, the more
it is possible for the site to offer customised recommendations, such as “Other users who liked the
Red Lion Pub also recommended the Lamb Inn.” In such a system, if other people are contributing
many recommendations, a purely self-interested person would have incentives to contribute many
recommendations themselves, to help “train” the system to give them good recommendations for
new products to try.

Adding this richer complexity to the economic environment allows us to probe and assess
the sophistication of the responses of the various behavioural types. The standard linear VCM
environment is attractive because it is simple. The method of Fischbacher et al. (2001) already
adds a degree of complication in the experimental protocol, because it asks participants to specify
a contribution strategy instead of a single contribution amount. In our additional environments,
participants now must also understand how contributions interact to determine the earnings conse-
quences for themselves and for others in the group, further adding to the burden. Our experiment
aims to understand how people react to complexity in the economic environment itself, and not
the complexity of the experimental implementation. We therefore designed our choice architecture
to minimise the cognitive burden that our explanation and presentation of the incentives placed
on our participants. We represent the participant’s endowment by separately-numbered “tokens”,
represented virtually on the screen. Each token is labeled with its marginal earnings consequences
if allocated to the public good, or if allocated to private consumption. These tokens are presented
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vertically on the screen, sorted by the difference between their value if retained for private con-
sumption and if contributed to the public good. Participants indicate their preferred allocation by
clicking on a token to indicate a division. In our design:

• We present the two options, private consumption and contributions to the public good, sym-
metrically, and pose the decision as an allocation between the two. Most protocols ask how
many tokens to contribute to the project; others ask how many to allocate to private con-
sumption. It is known that how this allocation question is framed can influence behaviour
(Andreoni, 1995).

• We follow good interaction design practices by integrating the information about the eco-
nomic incentives (by labeling each token with earnings amounts) and the decision interface
(allocations are made by clicking on one of the tokens) into the same graphical device (the
visual representation of the tokens themselves). This contrasts with more standard practices
of asking participants to type numbers into an array of text boxes.

• Our presentation communicates the earnings consequences of the allocation for the partici-
pant herself and for the group. Previous experiments which used non-linear payoff structures,
such as Andreoni (1993), Keser (1996), Chan et al. (2002), and Gronberg et al. (2012), used
payoff tables or visualisation of payoff surfaces to explain how the participant’s earnings de-
pending on the decisions, while leaving the earnings consequences for the rest of the group
implicit.

Our implementation of the choice architecture therefore differs from the one used in the exper-
iments to which we will compare our results. We find, under the linear earnings environment,
that the proportions of participants whose strategies reveal own-earnings-maximising, and of par-
ticipants who match at or about one-to-one the contributions of others, are comparable to those
reported previously. Meanwhile, participants who reveal own-earnings-maximising conditional
contribution strategy also make non-contingent contributions of zero more often than reported in
previous studies. Our experiment therefore provides a robustness check that confirms the rela-
tive proportions of behavioural types previously claimed in this environment, while identifying a
greater degree of internal consistency in responses among own-earnings-maximising participants
in our implementation relative to the version which has been widely used.

The remainder of the paper is structured as follows. In Section 2 we introduce the economic
environments and mechanisms used in the experiment, and discuss two theories of behavioural
types. In Section 3 we describe the experimental design and the choice architecture. In Section 4
we state the hypotheses which motivate the data analysis and results of Section 5. We conclude in
Section 6 with a discussion.
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2 Theory

2.1 A public goods environment with linear-quadratic earnings

There are N players, i = 1, . . . , N , whom we refer to collectively as the group. Each player i
has an endowment ω > 0 of a resource, which we call tokens, which she can allocate between a
private account xi and a contribution gi towards a public good, which we call the project. Player
i’s feasible actions are allocations AR ≡ {(gi, xi) ∈ R2

+ : gi + xi = ω}. The total amount
contributed towards the project by the group is G ≡ ∑N

j=1 gj , with G−i =
∑

j 6=i gj denoting the
total contributions of players other than i. Given private consumption xi and contributions to the
project by other players G−i, the monetary payoff of player i is given by a function Πi(gi, xi, G−i).

In our experiment monetary payoffs are determined using functions of the form

Πi(gi, xi, G−i; β1, β2, λ) = (β1 − λG−i)xi − β2x
2
i + 0.4 [G−i + gi] , (1)

where β1 > 0 and β2 ≥ 0.1 We hold constant the marginal per-capita return (MPCR) ∂Πi

∂G
= 0.4.

By varying β1, β2, and λ, we can manipulate the location and slope of the reaction function, given
G−i, for a player who wants to maximise her monetary earnings.

When β2 = λ = 0, we have

Πi(gi, xi, G−i; β1, 0, 0) = β1xi + 0.4 [G−i + gi] , (2)

which is the payoff function for a standard VCM game with linear and additively separable pay-
offs. The earnings-maximising reaction function for player i is to allocate all tokens to her private
consumption,

(g̃i(G−i), x̃i(G−i)) = (0, ω). (3)

Note that ∂2Πi(gi,xi;G−i)

∂x2i
− ∂2Πi(gi,xi;G−i)

∂g2i
= −β2. When β2 > 0, earnings are strictly concave in

the number of tokens allocated to the private account, and the reaction function for player i to
maximise her own earnings is

(g̃i(G−i), x̃i(G−i)) =

(
ω − β1 − λG−i − 0.4

2β2

,
β1 − λG−i − 0.4

2β2

)
, (4)

when the g̃i(G−i) so defined is in [0, ω]. The parameter λ captures the degree of complementary
or substitutability of contributions, and therefore the slope of the reaction function. When λ = 0

in (4), the reaction function is constant, as in the specification used by Keser (1996) and Sefton

1Potters and Suetens (2009) used a similar quadratic specification in an experiment with repeated interaction be-
tween fixed pairs.
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and Steinberg (1996).2 When λ > 0, player i wants to contribute more tokens to the project when
others are making larger contributions, whereas when λ < 0 she wants to contribute fewer tokens
to the project when others’ contributions are higher.3

In our experiment tokens are discrete. In passing to the restricted action spaceAZ ≡ {(gi, xi) ∈
Z2

+ : gi + xi = ω}, we observe that the strict concavity (when β2 > 0) of Πi(gi, xi, G−i) with
respect to the allocation to the private account ensures that the earnings-maximising allocation is
either the integer immediately above or below the reaction function given by (4). In the exposition
of our experimental parameterisation we focus on this discretised case.

Allocation decisions are made in two stages, using an extensive form game introduced by
Fischbacher et al. (2001) as the p-experiment game. In Stage 1, players i = 1, . . . , N − 1 simulta-
neously and independently choose their allocations (gi, xi). Then in Stage 2, the remaining player
i = N learns the average contribution of those N − 1 players, rounded to the nearest integer,
which we refer to as G; she then decides her allocation. Therefore, the strategy spaces for players
i = 1, . . . , N − 1 are the same as the action space, Si = AZ. For player N , the strategy space
is SN = {s : {0, . . . , ω} → AZ}. The rounding involved in determining G makes this game
formally a game of imperfect information; each level of G is an information set. We refer to the
component of the action of players i = 1, . . . , N − 1 specifying the contribution to the project as
the unconditional contribution ui, and the strategy in SN specifying the contribution to the project
as the contribution strategy c(·).

For each game, we identify the set of rationalisable strategies (for players whose objective
function is to maximise their own earnings), and the set of perfect Bayesian equilibria in pure
strategies. We refer to an equilibrium as symmetric when the unconditional contributions ui are
the same for all i = 1, . . . , N − 1.

2.2 Experimental parameterisation

Groups in our experiments consisted of N = 4 players. Participants made decisions in four games.
In each game participants had an endowment of ω = 20 tokens. Earnings in our baseline game,
LINEAR (ΓL), were determined the same way as in Fischbacher et al. (2001), Fischbacher and
Gächter (2010), and Fischbacher et al. (2012),4

ΠL
i (gi, xi, G−i) ≡ Πi(gi, xi, G−i; 1, 0, 0) = xi + 0.4 [G−i + gi] ,

2Other studies using a quadratic specification with an interior earnings-maximising dominant strategy are Willinger
and Ziegelmeyer (1999), and Gronberg et al. (2012).

3Other approaches have been used to generate interior equilibria. Andreoni (1993) used a Cobb-Douglas payoff
specification; Cason and Gangadharan (2015) a piecewise-linear specification; and Chan et al. (2002) a quadratic
specification with a different structure than ours.

4All earnings are expressed in GBP.
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That is, the value of each token allocated by player i to her private account was £1.00, irrespective
of how many tokens she allocated or the decisions of others in the group.

We compare participants’ decisions in ΓL with their decisions in three games in which β2 =

.03. The parameters for each game generate a reaction function for the Stage 2 player which is
in the interior of the action space for all values of u1 + u2 + u3, and, importantly, the earnings-
maximising response for the Stage 2 player is the same for all values of u1 +u2 +u3 consistent with
each information set G. Therefore the loss of precision in information about the play of others due
to the rounding of average contributions is not strategically relevant for the earnings of the Stage 2
player. In Appendix A we discuss our choice of parameters and provide a complete analysis of the
equilibria of each game for own-earnings-maximising players.

In DOMINANT (ΓD) earnings are determined by

ΠD
i (gi, xi, G−i) ≡ Πi(gi, xi, G−i; 1.18, 0.03, 0) = 1.18xi − 0.03x2

i + 0.4 [G−i + gi] .

This game can be solved by iterated elimination of strictly dominant strategies. The Stage 2 player
has a strictly dominant strategy c?D(G) = 7 for all G. Given this, a contribution of u?Di = 7 is
strictly dominant for each player i.

In SUBSTITUTES (ΓS) earnings are determined by

ΠS
i (gi, xi, G−i) ≡

Πi

(
gi, xi, G−i; 1.06, 0.03,− .02

3

)
=

(
1.06 +

.02

3
G−i

)
xi − 0.03x2

i + 0.4 [G−i + gi] .

The Stage 2 player has a strictly dominant strategy, which is a nonincreasing strategy c?S(G) with
c?S(0) = 9 and c?S(20) = 4. The rationalisable unconditional contributions are 3 ≤ uSi ≤ 7 for
i = 1, 2, 3. There is a unique symmetric equilibrium with u?S1 = u?S2 = u?S3 = 7, with c?S(7) = 7

on the equilibrium path, and asymmetric equilibria with u?S1 + u?S2 + u?S3 = 13, with c?S(4) = 8

on the equilibrium path.

In COMPLEMENTS (ΓC), earnings are determined by

ΠC
i (gi, xi, G−i) ≡

Πi

(
gi, xi, G−i; 1.34, .03,+

.02

3

)
=

(
1.34− .02

3
G−i

)
xi − .03x2

i + 0.4 [G−i + gi] .

The stage 2 player has a strictly dominant strategy, which is a nondecreasing strategy c?C(G) with
c?C(0) = 4 and c?C(20) = 11. The rationalisable unconditional contributions are 7 ≤ uCi ≤ 10 for
i = 1, 2, 3. There is a unique symmetric equilibrium with u?C1 = u?C2 = u?C3 = 7, with c?C(7) = 7

on the equilibrium path, and asymmetric equilibria with u?C1 + u?C2 + u?C3 = 29, with c?C(10) = 8
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on the equilibrium path.

For any fixed G−i, the group’s total earnings are always maximised when player i contributes
all of her tokens to the project. Furthermore, for games γ ∈ {D,S,C}, any contribution g <

c?γ(G) by the Stage 2 player is Pareto-dominated by a contribution of c?γ(G). There are no such
conditionally Pareto-dominated contribution levels in LINEAR.

2.3 Theories of types in the linear p-experiment game

The p-experiment game is typically combined with the strategy method, which enables elicitation
of the full strategy of the player making her allocation in Stage 2. The contribution components
of these strategies have been used as the basis for identifying different types of behaviour across
participants.

In previous studies using the p-experiment game with linear payoffs, there are only two con-
tribution strategies which are followed exactly by more than a small number of participants: (1)
free-riding (FR), which corresponds to the contribution strategy c(G) = 0 for all G, and (2) exact
one-for-one matching (OFO), which corresponds to c(G) = G for all G (Fallucchi et al., 2019).
Fewer than one-half of participants adopt one of these strategies exactly. Within an experiment,
most participants adopt a strategy which is unique among participants in the experiment’s sam-
ple, although many of these unique strategies differ only in the contributions in a small number of
contingencies.

Because of the prevalence of similar-but-not-identical contribution strategies, methods for clas-
sifying different strategies into a small number of types have been proposed. There is inherently an
element of judgement in dividing the heterogeneous contribution strategies into a small number of
types. We therefore consider two type schemata, which we will use jointly to help summarise the
contribution strategy data. Each contribution strategy will therefore have a “type” in each schema;
which schema is being referenced will be clear from the context.

Fischbacher et al. (2001) proposed a schema (which we call FGF) which classifies strategies
into four types. Free-riders (FR) contribute exactly zero in all contingencies, c(G) = 0. Con-
ditional cooperators (CC) increase their contributions based on higher contributions by others.
Formally, participant i is a conditional cooperator if the Spearman’s ρ correlation coefficient be-
tween the vector [0, 1, . . . , ω] of possible average contributions and the participant’s contribution
strategy [c(0), c(1), . . . , c(ω)] is significantly positive with p-value less than some threshold (typi-
cally 0.001, which is the value we use in this paper). Hump-shaped (HS) contributors are identified
by visually classifying contribution strategies in which c(0) and c(ω) are zero or small, but c(G) is
larger for some intermediate information sets 0 < G < ω. Any contribution strategy not matching
one of the above criteria is placed in a residual type.
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Fallucchi et al. (2019) re-visit data from six p-experiment studies, and use cluster analysis
to propose there are five “stereotypical” strategies: own-maximisers (OWN, ĉOWN(G) = 0),
weak conditional cooperators (WCC, ĉWCC(G) = 1

2
G), strong conditional cooperators (SCC,

ĉSCC(G) = G), unconditional high contributors (UNH, ĉUNH(G) = ω), and mid-range contribu-
tors (MID, ĉMID(G) = 1

2
ω). We use this observation to construct a second schema (which we call

FLT).5 We define the distance between two contribution strategies c and c′ using the Manhattan
distance,

d(c, c′) =
ω∑

G=0

∣∣c(G)− c′(G)
∣∣ . (5)

Letting c(j) denote the contribution strategy of a given participant j, the type of the strategy in this
schema, T FLT (c(j)), and by extension the participant, is determined by the stereotypical strategy
to which c(j) is closest,

T FLT (c(j)) = arg min
t∈{OWN,WCC,SCC,UNH,MID}

d(c(j), ĉt). (6)

3 Experimental design

3.1 Payoff structure treatments

Participants were assigned at random into groups of four. The member identifiers of the group
were the four suits of a standard deck of cards (clubs, diamonds, hearts, and spades). The standard
icons for these suits were used extensively in the instructions as well as the decision screens.
Each participant’s instructions were customised based on their suit identification. For example, the
instructions for a participant with the identifier clubs (♣) consistently used phrasing like “your ID
(♣)” and “the other members of your group (♦♥♠).”6

Participants were asked to make their decisions in each of the four games without any feedback
on the choices of others or outcomes of any of the games. The games were presented in one of four
orderings, which differed across sessions. Games 1 and 3 were always LINEAR and DOMINANT,
in either order, and Games 2 and 4 where always COMPLEMENTS and SUBSTITUTES, again in
either order.

5Fallucchi et al. (2019) use the output of their cluster analysis to assign types. A feature of using cluster analysis is
that types are defined endogenously based on the full dataset presented to the algorithm, and therefore the classification
of strategies on the “border” between types may change as new data are included. The deterministic version presented
here is based on their observation that these stereotypical behaviours, which have simple intuitive behaviours, emerge
robustly as the centres of mass of types even when resampling the data.

6Complete instructions are available as a separate Appendix.
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3.2 Timing of moves

The decisions in each game were elicited using the p-experiment protocol created by Fischbacher
et al. (2001).

3.2.1 Step 1: Explain the earnings structure

For each game, the first screen explained to participants how their token allocation would affect
their earnings and those of others in their group. This was explained both in a brief prose descrip-
tion, and using a table; the contents of the screens for each of the games are included in a separate
Appendix.

We present the allocation task as allocating twenty individually-numbered tokens to either the
project or the private account. The structure of the earnings function (1) allows us to express
the earnings consequences of the allocation of each individual token. Because the MPCR is held
constant at £0.40 for all tokens in all games, the consequence of allocating any token to the project
is shown as “40p each.” The four games vary the consequence of allocating different tokens to the
private account. By convention, token #1 was the token which generated the smallest return when
allocated to the private account, and token #20 the token which generated the largest return.

3.2.2 Step 2: The Stage 1 allocation

We elicited decisions using the graphical device shown in Figure 1, which we referred to as the
allocation panel. The participant allocated a token to the project by clicking on the box to the left of
that token. Similarly, the participant allocated a token to the private account by clicking on the box
to the right of that token. When a participant clicked to allocate token i, the device automatically
allocated all tokens with numbers below i to the project, and all tokens with numbers above i
to the private account.7 Participants were able to adjust their allocations as many times as they
wished before confirming. Colour-coding was used to indicate the currently-selected allocation;
tokens allocated to the project were shown in yellow and those to the private account were shown
in orange.

The allocation panel differs from most choice architectures in VCM experiments. With the use
of individually-identifiable tokens, the decision is represented as the choice of an allocation, (g, x)

in the notation used in Section 2, between the project and the private account. Our expression of
the choice as division of tokens in a lab setting is novel.8 Most experiments elicit decisions by

7Therefore the allocation panel did enforce efficiency in that, whenever k tokens were allocated to the project, they
were always the k tokens worth the least to the participant in their private account.

8We acknowledge that this choice architecture is more common in field studies with primary school children (see
e.g. Harbaugh and Krause, 2000; Hermes et al., 2019) to provide an easier understanding of the payoff consequences
of choices in the linear public good game.
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Figure 1: Screenshot of the allocation panel, used by participants to indicate decisions in the
experiment. Left: The panel at the start of a decision. Right: The panel with an allocation selected,
with 6 tokens allocated to the project and 14 to the private account.
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asking participants to type numbers into text boxes. Many VCM experiments, including those of
Fischbacher et al. (2001); Fischbacher and Gächter (2010); Fischbacher et al. (2012) to which we
compare our results, ask participants to specify only the contribution to the group project; others
ask for participants to state how many tokens are retained in the private account or removed from
a common resource pool (Gächter et al., 2017). The effects of these choice architecture decisions
on allocations have been studied (Brandts and Schwieren, 2009; Dufwenberg et al., 2011; Cubitt
et al., 2011; Cox et al., 2013; Cox, 2015; Khadjavi and Lange, 2015; Kingsley, 2015; Cox et al.,
2018). When the decision is expressed as a contribution to a public project from an endowment
initially allocated to an individual account, contributions are generally higher.

The allocation panel also incorporates information about the consequences of an allocation di-
rectly into the graphical instrument used to express the choice.9 Each token is individually labeled
with the consequence of allocating that token to the project. The project column includes the iden-
tifiers of all four group members and each consequence in this column includes the word “each.”
The private account column includes only the identifier of the participant making the decision.
This integration is likewise a novelty in LINEAR, but is essential for the other games in which the
value of retaining different tokens in the private account is different.

3.2.3 Step 3: The Stage 2 allocation

Figure 2 displays the choice architecture for the Stage 2 allocation strategy, which requires the
specification of 21 decisions. We referred to each possible realisation of the average Stage 1
allocation to the project as a scenario. The allocation panels for three scenarios were available on
the screen at any time, with a tabbed interface available to navigate among scenarios. A panel at
the right of the screen summarised the allocations made by the participant so far. Allocations could
be made in any order and changed as often as the participant liked, before confirming the decisions
with the button at the bottom-right of the screen.10

3.3 Determination of earnings

One of the four games was selected at random to determine the earnings for the session. At the time
participants made their decisions, they did not know which game would be selected, nor whether
they would make their decisions in Stage 1 or Stage 2. Prior to any decisions being made, the
experimenter placed four cards, one with each member identifier, into four sealed envelopes, and
asked a participant to draw one of those envelopes. The sealed envelope was posted on the wall

9Gronberg et al. (2012) also used a device for making earnings-maximising responses straightforward to discover,
but their architecture did not directly represent the social benefits of contributing to the project.

10Fischbacher et al. (2001) elicit this using an array of 21 text boxes referred to as the “contribution table.” In our
instructions we simply refer to Stage 1 and Stage 2 choices.
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Figure 2: Indication of Stage 2 allocation strategy decisions. Three scenarios were available on the
screen at a time. Navigation across scenarios was available using tabs at the bottom of the screen.
A panel at the right summarised the allocation decisions made so far.
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at the front of the lab, but not opened; participants were told the experimenter would open the
envelope at the end of the experiment, and the member with the selected identifier would be the
one who would play in Stage 2. Then, the experimenter placed four cards, with numbers 1 through
4, into four sealed envelopes, and asked another participant to select one envelope. The sealed
envelope was likewise posted on the wall at the front of the lab, but not opened; participants were
told the experimenter would open the envelope at the end of the experiment, and the corresponding
game would be the one which would determine earnings.11 At the end of the experiment, the
experimenter opened both envelopes to determine the game that would be played out, and which
group members would make their decisions in Stage 1 and Stage 2, respectively. The software
then computed the results of the corresponding game using the participants’ decisions to determine
earnings.

3.4 Experimental sessions

We conducted a total of 8 sessions at the laboratory of the Centre for Behavioural and Experimental
Social Science (CBESS) at University of East Anglia, in April and May, 2016. We recruited
148 participants from the standing participant pool, maintained using the hRoot system. (Bock
et al., 2014) The experiment was programmed using zTree (Fischbacher, 2007). Sessions lasted
on average 75 minutes, including instructions and control questions, and participants earned on
average £23.39 with an interquartile range of £5.34.12

4 Hypotheses

We designed our choice architecture to organise and communicate the participants’ financial incen-
tives in each game in a standard way, accommodating the presence of a nonlinear payoff function
without requiring participants to do extensive calculations. This new design allows us to test the
robustness of behaviour in the linear VCM using the p-experiment, when using a different method
of eliciting the decisions.

Hypothesis 1. The proportions of types of contribution strategies in LINEAR will be the same in

our experiment as in previously-reported experiments.

Hypothesis 2. The distribution of unconditional contributions in LINEAR will be the same in our

experiment as in previously-reported experiments.
11Both the game and the roles are determined at random in this experiment and not revealed until the end of the

session. With these two layers of random selection, we found it easier to write the instructions clearly and concretely
by following this approach of pre-selecting the envelopes but keeping them visible but sealed, as we could then refer
specifically to the contents of the selected but still unknown card in the posted envelope.

12For comparison, the living wage in the United Kingdom at the time of the experiments was £8.25 per hour.
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In re-analysing previous linear VCM experiments using the p-experiment protocol, Falluc-
chi et al. (2019) identified the two most common types of Stage 2 strategies as own-maximisers
(25.8%) and strong conditional cooperators (38.8%). Making decisions to maximise one’s own
expected earnings is commonly observed across experiments in economics, especially in one-shot
interactions such as the games in our experiment. As such it is a reasonable presumption that own-
maximisers in LINEAR do so because the understand the economic context in the game and are
expressing an informed decision. Because the design of the choice architecture expresses the finan-
cial incentives of all games in a parallel way, we expect these participants to choose contribution
strategies which maximise their own earnings across the other games as well.

Hypothesis 3. Participants who are identified as own-maximisers in LINEAR will exhibit own-

earnings-maximisation across all games; that is, they will use contribution strategies given by the

version of (4) restricted to discrete integer choices.

In contrast, different accounts have been given for the behaviour of strong conditional co-
operators. Participants might match the contributions of others one-to-one because they do not
understand the economics of the game as given by the financial incentives, or because they are
ignoring those incentives in favour of a rule of thumb transferred from a different context. In each
of DOMINANT, SUBSTITUTES, and COMPLEMENTS, following a one-to-one rule of thumb when
others contribute below the Nash level would lead to conditionally Pareto-dominated contributions.
If strong conditional cooperators were to match one-to-one for contributions lower than the Nash
level, this would implicate confusion or heuristic transfer.

Hypothesis 4. Participants who are identified as strong conditional cooperators in LINEAR will

follow the same rule of thumb of (approximate) one-to-one matching across all games; this will

result in conditionally Pareto-dominated choices in some contingencies.

5 Results

5.1 Behaviour in the linear VCM

We benchmark our LINEAR data against the series of studies, which use the p-experimental pro-
tocol, by Fischbacher et al. (2001), Fischbacher and Gächter (2010), and Fischbacher et al. (2012)
(which we refer to as the “Fischbacher sample”).

To get a handle on whether our contribution strategies are similar to those in the Fischbacher
sample, we classify behaviour according to the two type schemata, FGF and FLT, introduced in
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Section 2. In Table 1 we report classifications based on the two approaches.13 Although matching
exactly one-for-one is the second most common contribution strategy, it is not a type in its own
right in either schema (it is a subset of CC in FGF and SCC in FLT). We therefore report the
proportion of these separately as OFO.

Result 1. The proportions of strategies which exactly or approximately maximise the participant’s

own earnings, and the proportions of strategies which exactly or approximately match the average

contributions of the group, are similar in our data and the Fischbacher sample.

Support. Contribution strategies which exactly or approximately maximise the participant’s earn-
ings appear with similar frequencies. For exact maximisation, we find a proportion of FR similar
to the Fischbacher sample (22.3 compared to 20.3, p = .62 using the binomial test). Relaxing
to approximate maximisation, our proportion of OWN is also similar (32.4 compared to 38.8;
p = .14).

Exact one-for-one matching occurs at a similar rate (7.4 compared to 10.0, p = .37), as does the
more relaxed criterion of strong conditional cooperation (27.0 compared to 34.1, p = .13).14

Result 2. The distribution of unconditional contributions in our data differs from the Fischbacher

sample. In our experiment, fewer participants make a positive unconditional contribution, and

the overall amounts contributed in Stage 1 are also lower. We observe a higher frequency of zero

contributions, and typically lower contributions overall. These differences are consistent at type

level.

Support. Using the Mann-Whitney-Wilcoxon (MWW) test, the distribution of our unconditional
contributions differs from the Fischbacher sample (r = .385, p < .001).15 The proportion of
participants contributing a positive amount is lower in our data (z = 3.71, p < .001). The increase
in zero contributions accounts for much although not all of the lower contributions in our data.
Conditional on contributing a positive amount, contributions in our data are also somewhat lower
(MWW, p = .055, r = .429).

13We do not report proportions of “hump-shaped” (HS) contributors. Among the 37 participants who do not satisfy
the criteria for FR or CC, none exhibit a clearly hump-shaped pattern. The presence of any clearly HS strategies would
be evident in the heatmaps in Figure 3 and Figure 6. The absence of HS contribution strategies in our data is a notable
difference from most previous studies.

14If we consider all types, our type distribution is similar to the Fischbacher sample under the FGF classification (χ2

test, p = 0.329), but differs under the FLT classification (χ2 test, p = 0.004). The differences arise from contribution
strategies which are HS in the Fischbacher sample, which are classified as OWN, WCC, or SCC in FLT, and the
existence in our data of participants who divide tokens more or less equally between the private account and the
project, who do not feature in the Fischbacher sample.

15For MWW tests we report the test statistic in terms of the effect size r, which is defined as the probability
a randomly-selected observation in the first-named sample is greater than a randomly-selected observation in the
second-named sample, with ties broken equiprobably.
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Although we observe broadly similar contribution strategies in our experiment as in the Fis-
chbacher sample, we found very different unconditional contributions. We ask whether the differ-
ence in our unconditional contribution data is driven by a certain type or types. Table 2 summarises
the distribution of contributions of the main types in Stage 1 for these three studies and our exper-
iment. Stage 1 contributions are lower in our data type-for-type. Of particular note are the Stage
1 contributions for exact free-riders; in our data only 6% (2 of 33) of these participants contribute
a positive amount, in contrast to 22% in the Fischbacher sample. Strong conditional cooperators,
and in particular the one-for-one subset of them, contribute about half as much in our study as in
the Fischbacher sample.
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FGF FLT

Study N FR CC OFO OWN WCC SCC UNH MID

Our data 148 22.3 52.7 7.4 32.4 22.3 27.0 2.7 15.5

Fischbacher et al. (2001) 44 29.5 50.0 9.1 43.2 20.5 27.3 2.3 6.8
Fischbacher et al. (2012) 136 14.7 70.6 11.0 35.3 21.3 38.2 2.2 2.9

Fischbacher and Gächter (2010) 140 22.9 52.1 9.3 42.1 20.0 32.9 2.1 2.9

Table 1: Type classifications based on contribution strategies in LINEAR.
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All participants Positive contributions only

Type Sample N Median Mean % Positive N Median Mean

FR Our data 33 0.0 0.1 2% 2 1.5 1.5
Fischbacher 65 0.0 1.8 22% 14 5.5 8.4

OFO Our data 11 0.0 2.9 36% 4 8.5 8.0
Fischbacher 32 7.5 8.6 81% 26 10.0 10.5

CC Our data 78 5.0 4.8 59% 46 7.5 8.2
Fischbacher 191 8.0 8.4 82% 157 9.0 9.8

OWN Our data 48 0.0 0.5 15% 7 3.0 3.1
Fischbacher 124 0.0 3.2 43% 53 5.0 7.5

WCC Our data 33 5.0 4.1 67% 22 6.0 6.1
Fischbacher 65 7.0 7.1 92% 60 8.0 7.8

SCC Our data 40 5.5 6.1 65% 26 9.0 9.4
Fischbacher 109 10.0 10.2 89% 97 10.0 11.4

Table 2: Stage 1 contributions by various Stage 2 types.
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5.2 Prediction of contribution strategies

Do the types identified by the contribution strategies chosen in LINEAR predict the contribution
strategies in games DOMINANT, SUBSTITUTES, and COMPLEMENTS? We focus first on OWN,
WCC, and SCC, who together comprise 83.5% of our participants.

To give an initial visual summary of the data, we use the method developed in Fallucchi et al.
(2019) and construct heatmaps for the contribution strategies of each type in each game. Let
T (j) denote the type classification of a given participant j. The heatmap for a type t is produced
by taking the contribution strategies of all participants assigned to that type, and constructing the
multiset {(G, c(j)(G))}j:T (j)=t,G=0,...,20. The frequencies of these ordered pairs are used to generate
the heatmap. Cells with darker shades correspond higher frequencies; the modal behaviour for any
given information set G can therefore be identified by the darkest cells.

For each type t we also define the medoid strategy c(t) as the strategy with the smallest average
distance from all the strategies in the type,

c(t) = arg min
{c(j):T (j)=t}

1

|{j : T (j) = t}|
∑

k:T (k)=t

d
(
c(j), c(k)

)
. (7)

The medoid for type t is always a strategy that was chosen by at least one participant classified
as type t. It coincides with the more familiar centroid when the centroid is a member of the set
{c(j) : T (j) = t}. The medoid strategy is one way to express a “most typical” strategy for the type,
and is plotted using small white diamonds in the heatmaps.

In Figure 3, we set each participant i’s type T (i) as their type determined by their contribution
strategy in LINEAR. Then, for each type t and for each game Γ, we take the participants classified
as type t and use their contribution strategies in Γ to construct the heatmap for type t in game Γ.

For participants classified as own-maximisers in LINEAR, the medoid contribution strategy in
each of the three nonlinear games is to contribute exactly the own-maximising number of tokens in
every contingency, except when other participants contribute 20 in SUBSTITUTES. The contribu-
tions of own-maximisers are typically at or close to the contribution strategy given by the reaction
function (4).

Participants identified as strong conditional cooperators in LINEAR also show a consistent pat-
tern across the other games. The medoid contribution strategies in the nonlinear games match
average contributions at or very near one-for-one, but - importantly - only when doing so is so-
cially improving. When contemplating possible low levels of contributions by the rest of the
group, the medoid contribution strategy of strong conditional cooperators selects the own-earnings-
maximising contribution. This is particularly striking in SUBSTITUTES, as this results in a non-
monotonic contribution strategy.
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(d) COMPLEMENTS

Figure 3: Heatmaps of Stage 2 strategies for allocations to project, derived from Stage 2 strategies
in LINEAR and grouped by FLT stereotypical strategies.
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OWN vs. SCC SCC vs. WCC OWN vs. WCC

LINEAR 88.861
(0.005)

70.889
(0.005)

69.877
(0.005)

DOMINANT 40.543
(0.014)

41.294
(0.014)

25.229
(0.259)

COMPLEMENTS 50.173
(0.023)

38.380
(0.021)

20.557
(0.486)

SUBSTITUTES 38.724
(0.021)

33.120
(0.054)

34.292
(0.045)

Table 3: Test statistics for Oja (2010) location test of the difference in the contribution vectors be-
tween types. p-values adjusted for multiple testing using the Benjamini-Hochberg False Discovery
Rate method are reported in parentheses.
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Result 3. The type identifications in LINEAR are predictive of behaviour in other games.

Support. The medoid contribution strategies of OWN and SCC are distinct across all four games,
and contribution strategies for both types cluster primarily near the medoid. For OWN, the medoid
contribution strategy is almost exactly the own-earnings-maximising reaction function in all games.
For SCC, the medoid contribution strategy is almost exactly to follow one-for-one matching above
the Nash equilibrium contribution level; below it, the medoid strategy chooses the own-earnings-
maximising contribution level, and avoids Pareto-dominated contribution levels.16 In contrast, the
distribution of contribution strategies for WCC is much more dispersed in all games. The medoid
contribution strategy for WCC in DOMINANT and SUBSTITUTES prescribes contributing a few
more tokens than the own-earnings-maximising amount when responding to group contributions
above the Nash level, while in COMPLEMENTS the medoid contribution strategy is exactly the
own-earnings-maximising reaction function.

To formalise the discussion, we are testing a hypothesis about whether the distributions of
contribution strategies are different among these three groups of participants. Distributions over
strategies can be quantified in various ways; we therefore take two approaches to testing for dif-
ferences in these distributions. Our first approach uses a non-parametric test proposed by Oja
(2010) based on spatial signed ranks. The null hypothesis is that the treatment difference between
samples is equal to the zero vector. Let T be the set of types being considered, and nt be the
number of participants in type t ∈ T . Let R be the vector of centred rank scores, with elements
Ri =

∑
c(j)

1
n

(
c(i)−c(j)
d(c(i),c(j))

)
. The average centred rank score for type t is thenRt =

∑
i:c(i)∈t

1
nt
Ri. B̂

is the covariance matrix given by RR′. To test the null hypothesis that the true difference in ranks
is the zero vector, form the test statistic

Q2 =
∑

t∈T
ntR

′
tB̂
−1Rt. (8)

The limiting distribution of Q2 is χ2
(|T |−1)k, where k is the number of dimensions in the data.17

We report in Table 3 the results of pairwise comparisons among OWN, SCC, and WCC for each
game, adjusting for multiple testing.18 SCC are different in all games from OWN (all p ≤ 0.015)
and from WCC (all p ≤ 0.045). WCC, however, are not well-distinguished from OWN in either
DOMINANT or COMPLEMENTS; in the latter, as noted the upward-sloping reaction function is also

16We say “almost exactly” because both OWN and SCC vary slightly from these descriptions when G = 20 in
SUBSTITUTES, and SCC when G = 0 in COMPLEMENTS. These are information sets which would be reached with
very small probabilities given the empirical distributions of unconditional contributions (see Section 5.4).

17Unlike in the univariate case, in the multivariate analysis there are no natural orderings of the data points. See Oja
(2010) for an overview of the different rules to rank observations using the Manhattan distance.

18Specifically, we apply the Benjamini-Hochberg False Discovery Rate method (Simes, 1986; Benjamini and
Hochberg, 1995). We sort the p-values in ascending rank, divide them by the rank and multiply for the number of
multiple tests performed.
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the medoid contribution strategy for WCC.

The advantage of the analysis above is that it takes the whole contribution strategy as the
observation. It allows us to quantify whether strategies are different across types, but not at which
information sets G they differ. Note, however, that the medoids in Figure 3 in all games below the
Nash equilibrium outcome are similar for among OWN, SCC and WCC, while the stereotypical
contribution patterns differ across the three types in information setsG above the equilibrium level.

Result 4. The majority of participants in all three main types do not choose conditionally Pareto-

dominated contributions.

Support. If we look at the heatmaps in Figure 3 we note that some of the choices, and in particular
for information sets G below the equilibrium level, are inefficient. Overall the subjects making
these choices range from 8 in COMPLEMENTS to 15 in DOMINANT and 16 in SUBSTITUTES. Of
these subjects, half of them are classified as WCC, while the remaining half is equally distributed
between OWN and SCC. However, most of these are just one step below the own-earnings max-
imisation contribution. We identify only four subjects (3% of the sample ) that systematically make
Pareto-dominated choices in all the three games, two SCC and one for each of the other two types.
The contribution patterns for information sets G below the equilibrium level should be similar
across types, as already hinted by looking at the heatmaps.

To test for this and for differences between types at any level of the information set, we follow
Barr et al. (2018) and perform, for each information setG, MWW tests comparing the distributions
of contributions between each pair of types. We report in Figure 4 the p-values of these tests,
corrected for the fact we are performing multiple tests.19 OWN and SCC are distinguished at all
information sets G above the Nash equilibrium level. SCC and WCC are distinguished when the
contributions of the group exceed the Nash by more than a few tokens; the distinction is weaker in
SUBSTITUTES, in which the reaction function is upward-sloping.

5.3 Comparison of strong conditional cooperators to theoretical models

We observe generally consistent behaviour among strong conditional cooperators across all games,
as well as a clear distinction of strong conditional cooperators from weak conditional cooperators.
We consider which theoretical models might be consistent with the modal contribution strategies
of SCC across the four games.

19We report the list of corrected p-values in Table 7 in Appendix B.
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(c) SUBSTITUTES

Figure 4: Results of pairwise comparisons of contribution strategies by information set G. Each
point is the p-value of a Mann-Whitney-Wilcoxon test; these are adjusted for multiple testing using
the Benjamini-Hochberg False Discovery Rate method. The vertical reference line is at G = 7,
below which differences among the types are not expected. The horizontal reference line is set at
p = 0.10.

5.3.1 Inequity aversion

Fehr and Schmidt (1999) propose a model of inequity aversion, in which a player’s utility may be
affected by whether the player’s monetary earnings are greater or less than the monetary earnings
of other players. In our games, inequity in earnings across players is determined entirely by the
different earnings players receive from their respective private accounts. Fix an information set
G, and assume the Stage 1 players all contribute ui = G. Let f(gi, G−i) represent the earnings
to player i from her private account if she contributes gi tokens to the project, and all other play-
ers contribute G−i tokens in total. Note that ∂f

∂gi
< 0. The financial earnings of player N are

πN(gN ;G) = f(gN , (N − 1)G)) + 0.4[(N − 1)G + gN ] and those of a given Stage 1 player i are
πi(gN ;G) = f(G, (N − 2)G + gN) + 0.4[(N − 1)G + gN ]. The difference in earnings between
player N and player i is

I(gN ;G) ≡ πN(gN ;G)− πi(gN ;G) = f(gN , (N − 1)G))− f(G, (N − 2)G+ gN).

Following Fehr and Schmidt, the utility of player N is given by

UN(gN ;G) = πN(gN ;G)− α
[
−I(gN ;G)

]+ − γ
[
I(gN ;G)

]−
,

where α ≥ 0 represents the sensitivity of the player to disadvantageous inequity, and γ ≥ 0 the
sensitivity to advantageous inequity. For each of our games, there exists an interval of informa-
tion sets G, including the one which occurs in the symmetric equilibrium, over which interval
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I ′(gN ;G) < 0.20 For these information sets,

U ′N(gN ;G) =




π′N(gN ;G) + αI ′(gN ;G) if gN > G

π′N(gN ;G)− γI ′(gN ;G) if gN < G;
(9)

and gN = G is a best response if

γI ′(G;G) ≤ π′N(G;G) ≤ −αI ′(G;G). (10)

Condition (10) holds at the symmetric equilibrium value u? = G irrespective of α and γ. In our
games, monetary earnings are concave in gN given G (strictly for games other than LINEAR), and
d
dG
c?(G) < 1 for all games. Therefore forG > u?, π′N(G;G) < 0, and so the left inequality in (10)

is relevant; one-for-one matching for information sets G > u? would be sustained by an aversion
to advantageous inequity, with progressively larger values of γ required for larger G. For G < u?,
π′N(G;G) > 0, and so the right inequality in (10) is relevant; one-for-one matching for information
sets G < u? would be sustained by an aversion to disadvantageous inequity. This model would
therefore attribute the modal contribution strategy of SCC to significant aversion to advantageous
inequity and no aversion to disadvantageous inequity. This is the opposite of the assumptions in
Fehr and Schmidt (1999), and also opposite to most experimental evidence, suggesting inequity
aversion is not a tenable explanation for the contribution strategies of SCC.

5.3.2 Warm glow giving

Andreoni (1989) proposed that players might contribute more to the project than required to max-
imise their own monetary earnings due to a warm glow feeling arising from the act of voluntary
contribution itself. Consider player N in information set G, again assuming symmetry of contri-
butions among Stage 1 players, and suppose her utility depends on her monetary earnings and the
number of tokens she contributes, U(gN ;G) = h(π(gN ;G), gN). If we assume h is differentiable,
a standard calculation shows the optimal response cWG(G) satisfies

π′(cWG(G);G) = −∂h/∂g
∂h/∂π

.

The function specifying the monetary earnings in our experiment satisfies π′(g;G) − π′(ĝ;G) =

20I ′(gN ;G) < 0 condition fails to hold only for largeG in COMPLEMENTS and smallG in SUBSTITUTES, in which
certain tokens result in losses if allocated to the private account.
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2β2(ĝ − g) for any two contribution amounts g and ĝ, and therefore, for games with β2 > 0,

cWG(G)− c(G) =
1

2β2

× ∂h/∂g

∂h/∂π
. (11)

where c(G) is the contribution strategy for an own-earnings-maximising Stage 2 player.

As G increases, so increases the baseline wealth of the Stage 2 player, which derives from
the Stage 1 contributions to the projects. The modal contribution strategy for SCC specifies the
own-earnings-maximising contribution forG up to the symmetric equilibrium level of 7; from (11)
this implies that warm glow must be zero (or negligible) for those income levels. To rationalise
the one-for-one matching by SCC for G > 7, (11) indicates that warm glow becomes relevant at
those income levels, and indeed becomes relatively more important than monetary income rapidly.
It would be a remarkable coincidence not only for so many participants to have preferences such
that warm glow kicks in exactly at our equilibrium earnings level, and indeed that this level would
occur exactly at our equilibrium as opposed to another group contribution level.21

5.3.3 Social cooperation norm compliance

Fehr and Schurtenberger (2018) propose a model which incorporates preferences for complying
with a norm, following an idea of e.g. Elster (1989). This notion of social cooperation norm

compliance offers a plausible account for the contribution strategies we observe among strong
conditional cooperators. In the case of the conditional contribution decision in the p-experiment,
the rounded average contributionG of other players might establish such a norm. A player in Stage
2 who gives consideration to social cooperation norm compliance would have utility

UN(gN , xN , G; ρ) =





ΠN(gN , xN , G)− ρ
(
xN −G

)2
if gN < G

ΠN(gN , xN , G) if gN ≥ G
(12)

The parameter ρ ≥ 0 captures the strength of any psychological costs that the player incurs by
contributing less than the amount prescribed by the norm set by G. Denote the best response
contribution in game γ for a player with utility of the form (12) as c̃γρ(G). Contributions in ex-
cess of the norm do not incur psychological costs or generate additional benefits; therefore, when
c?γ(G) ≥ G, it follows that c̃γρ(G) = c?γ(G). The stylised stereotypical behaviour of strong condi-
tional cooperators, matching average contributions one-for-one when doing so is not conditionally
Pareto-dominated, is generated by a sufficiently large value of ρ. In particular, for each game γ,

21Many contribution strategies classified as WCC are broadly consistent in a qualitative sense with (11) under the
reasonable supposition that the glow from giving becomes relatively more important than the value of additional
income as the baseline income increases.
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Figure 5: Distributions of unconditional contributions.

there exists some threshold ργ such that, when ρ > ργ , c̃γρ(G) = G for all information sets G at
which c?γ(G) < G. These threshold values are 0.61 for LINEAR, 0.51 for COMPLEMENTS, 0.76

for DOMINANT, and 0.88 for SUBSTITUTES. If 0 < ρ < ργ , c̃γρ(G) ∈
(
0, G

)
for all informa-

tion sets G at which c?γ(G) < G, corresponding broadly to the behaviour of weak conditional
cooperators. The medoid contribution strategies for WCCs across the four environments are best
rationalised by (12) with values of ρ between 0.015 and 0.03. These parameters contrast sharply
with those which rationalise SCC strategies.
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LINEAR DOMINANT COMPLEMENTS SUBSTITUTES

LINEAR 1.00

DOMINANT 0.38
(<0.001)

1.00

COMPLEMENTS 0.23
(0.006)

0.38
(<0.001)

1.00

SUBSTITUTES 0.21
(0.011)

0.43
(<0.001)

0.40
(<0.001)

1.00

Table 4: Spearman rank-order correlation of unconditional contributions across games. Numbers
in parentheses are significance levels adjusted for multiple testing using the Benjamini-Hochberg
False Discovery Rate method.
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5.4 Unconditional contributions across games

Our experimental design focuses on eliciting the contribution strategies. In Section 4 we did
not specify hypotheses about the unconditional contributions. Nevertheless, under the assump-
tion of own-earnings-maximisation, rationalisable unconditional contributions can be ranked, with
uSi ≤ 7 = uDi ≤ uCi . This ranking arises because of the Stackelberg intuition that Stage 1 play-
ers can strategically influence the contribution response of the Stage 2 player; a participant might
recognise this strategic opportunity qualitatively without reacting quantitatively as equilibrium pre-
dicts. We therefore use this prediction as a benchmark, while bearing in mind that unconditional
contributions are a function both of preferences, which based on the evidence from type classifi-
cations vary substantially across participants, and beliefs about the behaviour of others, which we
did not attempt to elicit.

Result 5. In contrast to the ranking of games provided by rationalisability, unconditional contri-

butions are highest in SUBSTITUTES, followed by DOMINANT, followed by COMPLEMENTS. The

unconditional contributions of individual participants are positively correlated across games.

Support. We plot the distributions of unconditional contributions in Figure 5. The average un-
conditional contribution is 9.7 tokens in COMPLEMENTS, 10.3 in DOMINANT, and 11.1 in SUB-
STITUTES. 80 (50) participants contribute more (fewer) tokens in SUBSTITUTES than COMPLE-
MENTS (p = .003, Wilcoxon matched-pairs test). Contributions in DOMINANT are in between: 75
(48) participants contribute more (fewer) tokens in SUBSTITUTES than DOMINANT (p = .091),
and 75 (54) contribute more (fewer) tokens in DOMINANT than COMPLEMENTS (p = .040). Over-
all, 37.1% of participants contribute at least as many tokens in SUBSTITUTES than DOMINANT and
at least as many tokens in DOMINANT than COMPLEMENTS, while 20.0% of participants exhibit
the reverse order.

Individual participants are systematically more or less generous in contributing to the project
across games. Table 4 reports the Spearman rank-order correlations of participants’ unconditional
contributions. The correlations between contributions in each pair of games are systematically
positive, ranging from 0.21 between LINEAR and SUBSTITUTES to 0.43 between DOMINANT and
SUBSTITUTES. We additionally aggregate unconditional contributions by type in Table 5, which
shows that the pattern of contributing more tokens in SUBSTITUTES than in COMPLEMENTS is not
driven solely by the behaviour of any one type.
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LINEAR DOMINANT COMPLEMENTS SUBSTITUTES

OWN 0.4
(1.2)

8.8
(3.5)

8.8
(6.4)

10.1
(4.4)

WCC 4.2
(3.6)

9.8
(3.7)

8.5
(4.0)

11.1
(3.9)

SCC 6.1
(6.2)

11.1
(4.4)

10.9
(5.8)

11.9
(4.4)

UNH 12.5
(9.6)

14.5
(4.4)

17.3
(3.2)

13.5
(3.3)

MID 7.8
(4.1)

12.1
(4.0)

9.9
(5.2)

11.3
(4.9)

Table 5: Average and standard deviations (in parentheses) of Stage 1 contributions for each type in
each game.

32



Unconditional contributions exceed the predictions for DOMINANT, SUBSTITUTES, and COM-
PLEMENTS, even among own-maximisers, who almost all contribute zero tokens in LINEAR. Our
baseline analysis assumed the Stage 2 player maximised her own earnings; however, it is certainly
reasonable that at least some players anticipated at least some reciprocity by the Stage 2 players
as exhibited by WCC and SCC. In Appendix A we extend our theoretical analysis to the case
where Stage 1 players are own-maximisers but anticipate that the Stage 2 player follows a SCC
strategy. Under this assumption, in SUBSTITUTES, u?S1 + u?S2 + u?S3 ∈ {13, 26}; in DOMINANT,
u?D1 + u?D2 + u?D3 ∈ {26, 29}; and in COMPLEMENTS, u?D1 + u?D2 + u?D3 ∈ {26, 29, 32}.

We can offer some circumstantial evidence for anticipated reciprocity by comparing the un-
conditional contributions of conditionally-cooperative participants between COMPLEMENTS and
SUBSTITUTES. Recall that the contribution strategies of strong conditional cooperators are par-
ticularly interesting in SUBSTITUTES because they contribute the fewest tokens in response to the
information set G = 7; either decreasing or increasing unconditional contributions from this level
leads to an increase in their contributions. In contrast, their contribution strategies are increasing in
COMPLEMENTS. We take the set of participants classified as WCC and SCC and consider their un-
conditional contributions in LINEAR. If we assume that these participants approach their decisions
in Stage 1 and Stage 2 in similar ways, we can take their unconditional contribution in LINEAR as
a rough proxy for their beliefs about the general expected contribution levels of other participants.
A conditional cooperator who believes others will contribute few tokens should contribute more
tokens in SUBSTITUTES than in COMPLEMENTS, because they anticipate contributions are likely
to be in the region G < 7 and therefore their preferences for conditional cooperation do not oper-
ate. In contrast, a conditional cooperator who believes contributions of others will be high should
contribute roughly the same in SUBSTITUTES and COMPLEMENTS, because in that case their pref-
erences for conditional cooperation would encourage them to contribute similar amounts in either
game. We divide conditional cooperators into two groups based on whether their unconditional
contribution in LINEAR is above or below the median of their type. We find that those who choose
unconditional contributions below the median in LINEAR contribute significantly more tokens in
SUBSTITUTES than in COMPLEMENTS (11.2 versus 8.5, Wilcoxon matched-pairs test p = 0.005).
Those with above-median unconditional contributions in LINEAR contribute similar amounts in
SUBSTITUTES and COMPLEMENTS (11.9 versus 11.4, p = 0.541).

Anticipated reciprocity can therefore account for the unconditional contribution levels exceed-
ing the baseline set by assuming an own-earnings-maximising Stage 2 player, but not the ordering
of unconditional contributions we observe across games.
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Type N Mean SE Quartiles

Own-maximisers 48 112.9 78.5 57 77 150
Strong conditional cooperators 42 115.0 70.8 62 97 153
Weak conditional cooperators 32 117.5 80.2 63 97 131

Mid-range 22 201.1 113.1 113 162 253
Unconditional high 4 150.3 100.7 79 117 222

Table 6: Time spent, in seconds, by participants answering control questions, by behavioural type.
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5.5 Response times to control questions

We have observed that strong conditional cooperators across games choose Stage 2 contribution
strategies which appear to follow consistent principles incorporating some sophisticated consider-
ation of the financial incentives of the game. This is suggestive that strong conditional cooperators
are making a well-informed and conscious decision in forming their Stage 2 strategies.

To look for further evidence, we look at the time participants spent reviewing and answering
the battery of comprehension control questions at the end of the instructions.22 Table 6 reports
descriptive statistics on the distribution of these times, by behavioural type.

Result 6. Strong conditional cooperators are not different from own-maximisers or weak condi-

tional cooperators in response time to control questions. Own-maximisers, weak and strong con-

ditional cooperators take significantly less time to complete the control questions than mid-range.

Support. Own-maximisers on average take 112.9 seconds to complete the control questions, strong
conditional cooperators 115.0 seconds and weak conditional cooperators 117.5 seconds. The lower
and upper quartiles of the distribution of response times are likewise similar between the groups.
We cannot reject the null hypothesis of these distributions being the same. (Kruskal-Wallis test,
p = 0.84)

Mid-range contributors take notably longer to complete the questions, at 201.1 seconds. This
differs from the response times of own-maximisers, weak conditional cooperators, and strong con-
ditional cooperators, (MWW, p = 0.001; the probability the completion time of a randomly-chosen
MID participant is longer than that of a randomly-chosen OWN/WCC/SCC is .76.)

There are many factors which might feed into how long it takes a participant to complete
the control questions. A participant could spend a longer time on the control questions because
of one or more incorrect answers, as participants could only continue once they gave a correct
response. Participants of different cognitive abilities might need more or less time to process and
respond to a question. Some participants with long response times may simply be less engaged
with the experimental task.23 However, in order to complete the control questions in a relatively
small length of time, a participant would need to be engaged with the task and provide the correct
responses to questions quickly. Our strong conditional cooperators appear to be as well-engaged
and understand the task as well as our own-maximisers.24

22Note however, that Bigoni et al. (2016) control for the task comprehension on the level of contribution in a
repeated game, finding no correlation.

23The distributions of the completion times for all groups have long right tails.
24We look at response times to the control questions rather than response times on choices because there are con-

founds in interpreting the latter. SCC generally take the longest to complete their Stage 2 decisions, while OWN
complete Stage 2 more quickly. Fast decision times, however, are consistent both with clarity in one’s own responses
and with a lack of deliberation. There is a more prosaic reason why SCC take longer to complete Stage 2, which
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5.6 Mid-range and unconditional high contributors

Only 22 participants are classified as mid-range contributors and 4 as unconditional high contrib-
utors. These participants do not show a systematic response to the anticipated contributions of the
other members of their group in LINEAR. Recall that the stereotype strategy for mid-range contrib-
utors is a constant contribution of 10 tokens irrespective of G and the stereotype for unconditional
high is full contribution of 20 tokens.

Figure 6 shows the heatmaps of Stage 2 strategies for these types. With only 4 participants
classified as unconditional high contributors no meaningful conclusions can be drawn. The much
longer control question response times for mid-range types reported in Table 6 suggest further
qualitative comment on their behaviour across games. Their longer times to complete the control
questions successfully suggests they had a harder time comprehending the experiment, were less
engaged with the task, or both.

The medoid contribution strategy for mid-range contributors in LINEAR is exactly, or nearly,
a contribution of 10 for all G for all four games. The contribution strategies do not shift sys-
tematically in response to the varying financial incentives across the games. The contributions in
these contribution strategies are not uniformly random; contributions closer to 10 tokens are more
frequent than those at either the high or low end of the strategy space. This contrasts with the
clustering results in Fallucchi et al. (2019), in which the heatmap of the analogous “various” group
is roughly uniform for all information sets G. This may be a response to a lack of confidence in
their comprehension of the game, in which a “choose the middle” heuristic may seem the safest
option. Alternatively, some may choose a contribution of 10 tokens on the principle of “share
and share alike,” where sharing is not done in terms of the financial incentives of the game, but
instead based on the strategy space of tokens. Our experiment is not designed to identify these
or other possible motivations for the mid-range contributor strategies, but we can note that as a
group they are not systematically responsive to the economic environment given by the financial
incentives. This suggests the instinctive response of participants who are unengaged, confused,
uncertain, and/or importing heuristics from other settings is to split the token endowment more
or less equally between the private account and the project; and not, in contrast to Hypothesis 4,
reflexively to match the contributions of others one-for-one.

6 Discussion

We investigate the robustness of pro-social behaviour in VCM games by eliciting the behaviour
of the same participants in games with different economic and strategic structures. Using a novel

is simply that it takes more mouse movement to input the SCC strategies. It is interesting that some participants
systematically adopt the SCC strategies even though it is more work for them to input it in the software.
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Figure 6: Heatmap of Stage 2 strategies for allocation to the project, for mid-range and uncondi-
tional high types, across games
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choice architecture to present the financial incentives and elicit the decisions, in the game with lin-
ear payoffs we find proportions of participants who adopt contribution strategies at or near the two
most common stereotypes, exact free-riding and exact one-for-one matching, which are compara-
ble to previous studies. We find contribution strategies in the linear game are strongly predictive
of the contribution strategies specified in the additional environments we investigate. Taken to-
gether, type classifications based on contribution strategies are fairly robust to how the decisions
are elicited, and have predictive value for how participants will choose in the other, related volun-
tary contributions environments we study.

Our results support the distinction between strong and weak forms of conditional cooperation,
as proposed in Fallucchi et al. (2019). Strong conditional cooperators, who match the average
contributions of others at or near a rate of one-for-one, generally avoid choosing conditionally
Pareto-dominated contribution levels. This provides evidence in favour of the account that, at least
for many strong conditional cooperators, the adoption of one-for-one matching is informed by the
financial incentives of the experiment. Among existing theoretical approaches, this integration of
financial incentives and other considerations is best captured by a model of social contribution
norm compliance. This model is distinguished from an explanation based solely to due to confor-
mity (Bardsley and Sausgruber, 2005) in its inclusion of financial incentives; in our interpretation,
the social norm of matching is applied only when it does not lead to inefficient outcomes. Other
standard models, such as warm glow giving or inequity aversion, would require assumptions on
parameters which are either knife-edge or inconsistent with received results from experiments in
other types of environments.

By applying the conditional contribution procedure in the p-experiment protocol to other envi-
ronments, we also learn more about the properties of the procedure itself. Zizzo (2010) raises the
possibility that the conditional contribution procedure creates a demand effect, by suggesting that
contributions should depend on the actions of others. Participants would therefore be more likely
to specify a contribution strategy which is responsive to the information about the contributions G
of others, even though the financial incentives of the game would indicate otherwise for partici-
pants seeking to maximise their own earnings. We include two environments, SUBSTITUTES and
COMPLEMENTS, in which participants who want to maximise their own earnings should indeed
respond by changing their contributions in response to G. Strong conditional cooperators choose a
systematically different way of conditioning their responses, which rules out experimenter demand
as an explanation for one-for-one matching.

The economically significant difference in our data compared to previous experiments using
the p-experiment protocol is that we observer lower unconditional contributions in LINEAR. Un-
der the assumption that participants choose unconditional contributions according to their beliefs
about the choices of others while using a strategy similar to their stated contribution strategy,
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lower unconditional contributions by conditional cooperators (of either type) would imply more
pessimistic beliefs about the anticipated contributions of others (Kölle et al., 2014).25 However,
unconditional contributions by own-maximisers are also lower; indeed almost all participants who
are exact free-riders in their contribution strategy also specify an unconditional contribution of
zero. So beliefs alone cannot explain the lower unconditional contributions in our data.

One explanation for the discrepancy in previous p-experiment studies in which free-riders nev-
ertheless contribute positive amounts in Stage 1 is the use of the strategy method itself. In Stage
2 of the p-experiment, participants are asked to think through the possible contingencies of G that
might arise, and how they would respond; such contingency-by-contingency reasoning might lead
own-earnings-maximising participants to realise that, in LINEAR, free riding always maximises
earnings. In contrast, the elicitation of the Stage 1 unconditional contributions does not offer the
opportunity to walk through such best-response reasoning.26 In most experiments, the elicitation
of the Stage 2 contribution strategy occurs after the Stage 1 unconditional contribution, so any ex-
perience from strategy-method thinking in Stage 2 comes too late to inform Stage 1 decisions. In
our choice architecture, the decision is presented with individual tokens labeled with their earnings
consequences, which makes the allocation which maximises one’s own earnings more transparent.
This individual labeling however has no aggregate effect on the Stage 2 contribution strategies,
in which we observe approximately the same proportions of free-riders as reported by previous
researchers.

Based on the re-analysis of Fallucchi et al. (2019) and the data in this paper, about 30% of par-
ticipants choose strongly conditionally cooperative contribution strategies in a linear VCM game.
We show that the contribution strategies these participants adopt in other games points to them un-
derstanding the financial incentives they face in the games, and reacting to those in a sophisticated
way. These strong conditional cooperators match the average contributions of others when - and
only when - doing so is efficiency enhancing. The “only when” in the previous statement allows us
to rule out confusion, misunderstanding, or a lack of engagement with the experimental task as an
explanation for this behaviour. Most strong conditional cooperators are expressing a sophisticated
response to the social dilemmas posed by the voluntary contributions environment.

25We did not attempt to measure beliefs in this experiment. The protocol is already complex for a participant to
digest, even with our choice architecture and concrete phrasing of many parts of the instructions.

26Anyone who has taught introductory game theory will know from experience that the contingency-by-contingency
reasoning to generate a reaction function does not come naturally to most students!
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Martin Dufwenberg, Simon Gächter, and Heike Hennig-Schmidt. The framing of games and the psychology
of play. Games and Economic Behavior, 73(2):459–478, 2011.

Jon Elster. Social norms and economic theory. Journal of Economic Perspectives, 3(4):99–117, 1989.

Francesco Fallucchi, R. Andrew Luccasen, and Theodore L. Turocy. Identifying discrete behavioural types:
a re-analysis of public goods game contributions by hierarchical clustering. Journal of the Economic
Science Association, 2019.

Ernst Fehr and Klaus M. Schmidt. A theory of fairness, competition, and cooperation. Quarterly Journal of
Economics, 114:817–868, 1999.

Ernst Fehr and Ivo Schurtenberger. Normative foundations of human cooperation. Nature Human Be-
haviour, 2(7):458, 2018.

Ernst Fehr and Jean-Robert Tyran. Individual irrationality and aggregate outcomes. Journal of Economic
Perspectives, 19(4):43–66, 2005.

Urs Fischbacher. z-Tree: Zurich toolbox for ready-made economic experiments. Experimental Economics,
10:171–178, 2007.
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A Experimental games: Design and perfect Bayesian equilib-
rium analysis

In this section we analyse the four p-experiment games, under the assumption that all players
maximise their own earnings. We show that for each game the Stage 2 player has a unique best
response strategy. Given this, we can identify the set of unconditional contributions which are
rationalisable for the Stage 1 players, and characterise the set of perfect Bayesian equilibria.

We number the three Stage 1 players as i = 1, 2, 3, and the Stage 2 player as i = 4. For LIN-
EAR and DOMINANT the analysis is straightforward, as the allocation which maximises earnings
does not depend on the allocations of other players. In LINEAR, the contribution which maximises
earnings is 0, irrespective of what other players do, and therefore the Stage 2 player’s equilibrium
contribution strategy is c?L(G) = 0 for all G ∈ {0, . . . , 20}, and for the Stage 1 players, the equi-
librium unconditional contributions are u?L1 = u?L2 = u?L3 = 0. In DOMINANT, the contribution
which maximises earnings is 7, and therefore the Stage 2 player’s equilibrium contribution strategy
is c?D(G) = 7 for all G ∈ {0, . . . , 20}, and for the Stage 1 players, the equilibrium unconditional
contributions are u?D1 = u?D2 = u?D3 = 7.

In turning to the analysis of SUBSTITUTES and COMPLEMENTS, our design of these games in-
corporated several considerations. As a starting point, we chose parameters such that the equilibria
of the simultaneous-move VCM with payoff functions ΠS and ΠC would have a unique symmetric
equilibrium with all players contributing 7, which coincides with the unique equilibrium in DOM-
INANT. The p-experiment game is a two-stage game, however. If our games were played with
payoff functions ΠS and ΠC but with continuous action spaces and perfect information about the
actions of the Stage 1 players, there would be a unique equilibrium in each game following the
usual Stackelberg-type logic. In SUBSTITUTES, Stage 1 players would have an incentive to reduce
contributions below 7, anticipating that the Stage 2 player would respond with a higher contribu-
tion; in COMPLEMENTS, the Stage 1 players would have an incentive to increase contributions
above 7, anticipating that the Stage 2 player would respond with a higher contribution.

This intuition applies to our games, but is complicated by the discreteness of the action space
and especially the imperfect information resulting from the rounding of the average contributions
of the Stage 1 players. The latter creates a discontinuity in the reaction function for the Stage
2 player; it is this discontinuity that results in multiple equilibria in games with this structure
(and not just for our chosen parameters). There are Stackelberg-type equilibria, which for our
parameters involve asymmetric contributions among the Stage 1 players, where the asymmetry is
a consequence of the discreteness of action spaces. Meanwhile, the unique symmetric equilibrium
of the game corresponds to the equilibrium of the simultaneous-move version, and therefore to the
dominant strategies in DOMINANT. This equilibrium survives because any of the Stage 1 player
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would have to decrease (in SUBSTITUTES) or increase (in COMPLEMENTS) their contribution by
multiple tokens in order to change the response of the Stage 2 player, and such a unilateral deviation
is unprofitable.

Another important design feature is that the best response for the Stage 2 player is constant
for all G−i consistent with each information set G. This is a consequence of the discreteness of
the action space, and is useful both theoretically and practically. Theoretically, it means that be-
liefs at each information set are not important for computing the reaction functions, and therefore
the Stage 2 player has a dominant strategy response. This is important because the Stage 2 con-
tribution strategies are the focus of our experiment. In LINEAR, the rounding of average Stage
1 contributions is not problematic for the baseline case of own-earnings-maximising players, but
is important practically because it cuts down the number of choices participants need to specify
in their contribution strategies. Our parameter choices allow us to extend the p-experiment de-
sign to our payoff structure, while not losing any information which is strategically relevant to an
own-earnings-maximising player in Stage 2.

The multiplicity of equilibria is a consequence of having discrete action spaces, the rounding
of the average contributions to report to the Stage 2 player, and having a systematic pattern for
how the value of tokens allocated to the private account change. Multiplicity could in principle be
eliminated by manipulating the formula for the value of tokens in the private account to destroy
one of the classes of equilibria, but at the cost of not having an easily-explainable rule for how
these values are determined. Our design retains the nice properties that the symmetric equilibrium
contributions are the same across SUBSTITUTES, DOMINANT, and COMPLEMENTS, and further
that the iteratively rationalisable unconditional contributions are weakly orderable, with contribu-
tions in SUBSTITUTES no more than in DOMINANT, and contributions in DOMINANT no more
than in COMPLEMENTS.

We now turn to the detailed analysis of SUBSTITUTES and COMPLEMENTS.

A.1 Analysis of SUBSTITUTES

We begin with the Stage 2 player’s decision. For any fixed G−4, player 4’s earnings are strictly
concave in her allocation decision. Therefore, if two allocations (g4, x4) and (g4 − 1, x4 + 1),
which are adjacent in AZ, result in the same earnings, they must jointly be the two (and only two)
earnings-maximising allocations. We can therefore characterise the best response of player 4 by
identifying the values of G−4 at which she is indifferent between adjacent allocations.

ΠS
4 (g4, x4, G−4)− ΠS

4 (g4 − 1, x4 + 1, G−4) = −
(

1.06 +
.02

3
G−4

)
+ .03 (2x4 + 1) + 0.40

= −.63 + .06(20− g4)− .02

3
G−4. (13)
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Setting this equal to zero, we see that player 4 is indifferent between (g4, x4) and (g4 − 1, x4 + 1)

if and only if Ĝ−4 = 9(9.5 − g4). If G−4 < Ĝ−4, she strictly prefers (g4, x4) to (g4 − 1, x4 + 1),
and if G−4 > Ĝ−4, she strictly prefers (g4 − 1, x4 + 1) to (g4, x4). Note that there are no solutions
where g4 and Ĝ−4 are both integers. Therefore the best response is strict for all G−4, and (g4, x4)

is a best response to G−4 if and only if 252
3
−3g4 ≤ G−4

3
≤ 281

3
−3g4. If this inequality is satisfied

for some G−4 such that G−4

3
is an integer, it is also satisfied for G−4 − 1 and G−4 + 1 for the same

g4. Therefore, for all information sets G, the best response is constant over all total contributions
G−4 for which G−4

3
rounds to G. The beliefs that player 4 might have over the values G−4 which

are consistent with information set G do not affect the best response. The unique rationalisable
contribution strategy c?S(G), and the contribution strategy in any perfect Bayesian equilibrium, is
therefore

c?S(G) 2 3 4 5 6 7 8 9

G−4 59-60 50-58 41-49 32-40 23-31 14-22 5-13 0-4
G 20 17-19 14-16 11-13 8-10 5-7 2-4 0-1

Turning to the Stage 1 players, the discrete jumps in the contribution strategy c?S(G) com-
plicate the analysis. It is most straightforward to tabulate the best response function by direct
calculation. Player 1’s reaction function is given by

u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1

0 8
1 8 11 7 21 6 31 5
2 8 12 7 22 6 32 5
3 8 13 7 23 6 33 5
4 8 14 7 24 6 34 5
5 8 15 7 25 6 35 5
6 7 16 6 26 5 36 4
7 6 17 5 27 4 37 3
8 5 18 4 28 3 38 2
9 4 19 3 29 2 39 1

10 3 20 2 30 1 40 0

By symmetry the best responses of the other players are identical up to the appropriate permu-
tation of the indices. In many contingencies, the optimal response for a player is to reduce their
contribution by exactly the number of tokens required to trigger a one-token increase by the Stage
2 player. For example, consider a situation in which player 1 believes that u2 + u3 = 18. Consider

45



any 5 ≤ u1 ≤ 13; this results in 23 ≤ G−4 ≤ 31 and the Stage 2 player responds with a contribu-
tion of 6 at these information sets. Among these, u1 = 6 would result in the highest earnings for
player 1. However, if instead player 1 contributes u1 = 4, then G−4 = 32 and the Stage 2 player
responds instead with a contribution of 7 tokens. Player 1’s earnings from u1 = 4 are higher than
from u1 = 6; there is a net loss of 0.40 from there being one fewer token contributed overall to the
project, but player 1 is more than compensated by his private account tokens being more valuable
due to the Stage 2 player’s larger contribution.

To identify the rationalisable strategies for the Stage 1 players, without loss of generality as-
sume u?1 ≤ u?2 ≤ u?3. Because u?3 ≤ 8, u?2 + u?3 ≤ 16, and so 3 ≤ u?1. This implies u?1 + u?2 ≥ 6, and
so u?3 ≤ 7. Therefore, 6 ≤ u?2 + u?3 ≤ 14, and the rationalisable strategies are 3 ≤ u?i ≤ 7.

The remaining pure strategy profiles (u?1, u
?
2, u

?
3) in which u?1 ≤ u?2 ≤ u?3 and u?1 is a best

response to u?2 + u?3 are (7, 7, 7) and {(3, 3, 7), (3, 4, 6), (3, 5, 5), (4, 4, 5)}. By inspection, the first
is the unique symmetric equilibrium, in which total unconditional contributions are G−4 = 21, and
the Stage 2 player responds on the equilibrium path with a contribution of 7. The second set are
asymmetric equilibria, in which total unconditional contributions are G−4 = 13, and the Stage 2
player responds on the equilibrium path with a contribution of 8.

A.2 Analysis of COMPLEMENTS

We begin with the Stage 2 player’s decision. For any fixed G−4, player 4’s earnings are strictly
concave in her allocation decision. Therefore, if two allocations (g4, x4) and (gi − 4, xi + 4),
which are adjacent in AZ, result in the same earnings, they must jointly be the two (and only two)
earnings-maximising allocations. We can therefore characterise the best response of player 4 by
identifying the values of G−4 at which she is indifferent between adjacent allocations.

ΠC
i (g4, x4, G−4)− ΠC

i (g4 − 1, x4 + 1, G−4) = −
(

1.34− .02

3
G−4

)
+ .03 (2x4 + 1) + 0.40

= −.91 + .06(20− g4) +
.02

3
G−4. (14)

Setting this equal to zero, we see that player 4 is indifferent between (g4, x4) and (g4 − 1, x4 + 1)

if and only if Ĝ−4 = 9
(
g4 − 45

6

)
. If G−4 > Ĝ−4, she strictly prefers (g4, x4) to (g4 − 1, x4 + 1),

and if G−4 < Ĝ−4, she strictly prefers (g4 − 1, x4 + 1) to (g4, x4). Note that there are no solutions
where g4 and Ĝ4 are both integers. Therefore, the best response is strict for all G−4, and (g4, x4) is
a best response to G−4 if and only if 3g4 − 141

3
≤ G−4

3
≤ 3g4 − 112

3
. If this inequality is satisfied

for some G−4 such that G−4

3
is an integer, it is also satisfied for G−4 − 1 and G−4 + 1 for the game

g4. Therefore, for all information sets G, the best response is constant over all total contributions
G−4 for which G−4

3
rounds to G. The beliefs that player 4 might have over the values G−4 which
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are consistent with information set G do not affect the best response. The unique rationalisable
contribution strategy c?C(G), and the contribution strategy in any perfect Bayesian equilibrium, is
therefore

c?C(G) 11 10 9 8 7 6 5 4

G−4 56-60 47-57 38-46 29-37 20-28 11-19 2-10 0-1
G 20-19 16-18 13-15 10-12 7-9 4-6 1-3 0

Turning to the Stage 1 players, again it is most straightforward to tabulate the best response
function by direct calculation. Player 1’s reaction function is given by

u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1

0 5
1 5 11 9 21 8 31 9
2 5 12 8 22 8 32 9
3 8 13 7 23 8 33 9
4 7 14 7 24 8 34 9
5 6 15 7 25 8 35 12
6 6 16 7 26 8 36 11
7 6 17 7 27 11 37 10
8 6 18 7 28 10 38 10
9 6 19 10 29 9 39 10
10 6 20 9 30 9 40 10

By symmetry the best responses of the other players are identical up to the appropriate permutation
of the indices. The intuition for the jumps in the reaction function is parallel to SUBSTITUTES,
except in COMPLEMENTS Stage 1 players may find it profitable to contribute just enough tokens
to ensure an additional token contribution by the Stage 2 player.

To identify the rationalisable strategies for the Stage 1 players, without loss of generality as-
sume u?1 ≤ u?2 ≤ u?3. Because u?2 ≥ 5, u?2 + u?3 ≥ 10, and so 6 ≤ u?1. This implies u?2 + u?3 ≥ 12.
Therefore, the rationalisable strategies are 7 ≤ u?i ≤ 10.

We consider remaining pure strategy profiles (u?1, u
?
2, u

?
3) in which u?1 ≤ u?2 ≤ u?3 in increasing

lexicographic order. The profile (7, 7, 7) is a symmetric equilibrium, in which the total uncondi-
tional contributions are G−4 = 21, and the Stage 2 player responds on the equilibrium path with a
contribution of 7. In order for u?3 ≥ 8, u?1 + u?2 ≥ 19, so the next profile to consider is (9, 9, 10),
at which player 3 is not best-responding. The profile (9, 10, 10) is an asymmetric equilibrium, in
which the total unconditional contributions are G−4 = 29, and the Stage 2 player responds on the
equilibrium path with a contribution of 8.
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A.3 Extension to the case where the Stage 2 player is SCC

As an extension, we characterise the set of rationalisable strategies and the pure-strategy perfect
Bayesian equilibria under the assumption that Stage 1 players maximise their own earnings, while
the Stage 2 player is a strong conditional cooperator.

First, observe that in LINEAR the equilibrium unconditional contributions remain u?L1 = u?L2 =

u?L3 = 0 even if the Stage 2 player follows the strategy ĉSCC(G) = G. Without loss of generality,
consider player 1; we claim that for any given u2 and u3, player 1’s earnings are strictly decreasing
in u1. To see this, suppose player 1 increases their contribution from some level u1 to u1 +1. Either
this results in no change in the Stage 2 player’s contribution, in which case player 1’s earnings
decrease by 0.60; or, it results in the Stage 2 player contributing an additional token, in which case
player 1’s earnings decrease by 0.20. Therefore, ui = 0 remains a strictly dominant strategy for all
Stage 1 players i = 1, 2, 3.

Based on our experimental results, for games γ ∈ {D,S,C} we define the Stage 2 player’s
SCC strategy as

cSCC,γ(G) =




c?γ(G) if G ≤ 7

G if G > 7.

We then proceed to compute the reaction functions for the Stage 1 players under the assumption
the Stage 2 player uses strategy cSCC,γ . The method for enumerating the rationalisable strategies
and equilibrium unconditional contribution profiles is the same as used in the previous subsections;
we present an abbreviated summary for compactness.

For SUBSTITUTES, the reaction function for player 1 is

u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1

0 8
1 8 11 7 21 8 31 7
2 8 12 7 22 7 32 6
3 8 13 10 23 9 33 8
4 8 14 9 24 8 34 7
5 8 15 8 25 7 35 6
6 7 16 10 26 9 36 5
7 6 17 9 27 8 37 8
8 5 18 8 28 7 38 7
9 4 19 7 29 6 39 6

10 3 20 9 30 8 40 7

The rationalisable strategies are 3 ≤ u?i ≤ 10. The equilibria with G−4 = 13 previously identified
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remain equilibria in this modified setting. However, the symmetric profile (7, 7, 7) is no longer an
equilibrium. Instead, there is a family of equilibria at profiles (7, 9, 10), (8, 8, 10), and (8, 9, 9),
with G−4 = 26, to which the Stage 2 player responds on the equilibrium path with a contribution
of 9.

For COMPLEMENTS, the reaction function for player 1 is

u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1

0 5
1 5 11 9 21 11 31 10
2 5 12 8 22 10 32 12
3 8 13 7 23 9 33 11
4 7 14 9 24 11 34 13
5 6 15 8 25 10 35 12
6 6 16 10 26 9 36 11
7 6 17 9 27 11 37 13
8 6 18 8 28 10 38 12
9 6 19 10 29 12 39 14
10 6 20 9 30 11 40 13

The rationalisable strategies are 8 ≤ x?i ≤ 11. The symmetric profile (7, 7, 7) is no longer an
equilibrium. There exist equilibria at (8, 8, 10) and (8, 9, 9), with G−4 = 26 and a Stage 2 con-
tribution of 9; at (9, 10, 10), with G−4 = 29 and a Stage 2 contribution of 10; and at (10, 11, 11),
with G−4 = 32 and a Stage 2 contribution of 11.

For DOMINANT, the reaction function for player 1 is

u2 + u3 ũD1 u2 + u3 ũD1 u2 + u3 ũD1 u2 + u3 ũD1

0 7
1 7 11 7 21 8 31 10
2 7 12 7 22 10 32 9
3 7 13 10 23 9 33 8
4 7 14 9 24 8 34 10
5 7 15 8 25 10 35 9
6 7 16 10 26 9 36 8
7 7 17 9 27 8 37 10
8 7 18 8 28 10 38 9
9 7 19 10 29 9 39 8

10 7 20 9 30 8 40 10
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The rationalisable strategies are 8 ≤ u?i ≤ 10. The symmetric profile (7, 7, 7) is no longer an equi-
librium. There exist equilibria at (8, 8, 10) and (8, 9, 9), with G−4 = 26 and a Stage 2 contribution
of 9; and at (9, 10, 10), with G−4 = 29 and a Stage 2 contribution of 10.
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B Adjusted p-values of the multiple pairwise comparisons

DOMINANT COMPLEMENTS SUBSTITUTES

OWN SCC OWN OWN SCC OWN OWN SCC OWN
vs. vs. vs. vs. vs. vs. vs. vs. vs.

G SCC WCC WCC SCC WCC WCC SCC WCC WCC

≤ 7 >0.469 >0.460 >0.898 >0.405 >0.333 >0.746 >0.255 >0.086 >0.746
8 <0.001 0.518

>0.746

0.014 0.730

>0.746

0.003 0.333

>0.541

9 0.011 0.246 0.014 0.094 0.020 0.587
10 0.018 0.194 0.001 0.046 0.004 0.086
11 0.003 0.011 <0.001 0.015 <0.001 0.072
12 <0.001 0.003 0.003 0.020 <0.001 0.059
13 <0.001 0.009 <0.001 0.007 <0.001 0.020
14 <0.001 0.006 <0.001 0.002 <0.001 0.039
15 <0.001 0.001 <0.001 0.001 0.001 0.062
16 <0.001 <0.001 <0.001 0.001 <0.001 0.037
17 <0.001 <0.001 <0.001 0.001 <0.001 0.017
18 <0.001 <0.001 <0.001 <0.001 <0.001 0.046
19 <0.001 <0.001 <0.001 <0.001 0.001 0.014
20 <0.001 <0.001 <0.001 <0.001 <0.001 0.014

Table 7: Pairwise comparisons of contribution strategies by information set G. Each cell is
the p-value of a Mann-Whitney-Wilcoxon test; these are adjusted for multiple testing using the
Benjamini-Hochberg False Discovery Rate method. G at or below the Bayes-Nash contribution
level are grouped, as no difference is expected in these contingencies.

51


